Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Int J Nanomedicine ; 19: 3387-3404, 2024.
Article in English | MEDLINE | ID: mdl-38617801

ABSTRACT

Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Programmed Cell Death 1 Receptor , Immunotherapy , Drug Delivery Systems , CD8-Positive T-Lymphocytes , Neoplasms/drug therapy
2.
Oncol Rep ; 51(5)2024 May.
Article in English | MEDLINE | ID: mdl-38456515

ABSTRACT

After the publication of the article, an interested reader drew to the authors' attention that, in the western blots shown in Fig. 5C and D, a pair of data panels were inadvertently duplicated comparing between panels (C) and (D); in addition, the cell migration data shown in Fig. 7F on p. 1852 were selected incorrectly. The authors have examined their original data, and realize that these errors arose inadvertently as a consequence of their mishandling of their data. The revised versions of Figs. 5 and 7, featuring the corrected data for the caspase-8 experiment in Fig. 5C and alternative data for the cell migration assay experiments in Fig. 7F, are shown on the next two pages. The revised data shown for these Figures do not affect the overall conclusions reported in the paper. All the authors agree to the publication of this corrigendum, and are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this. Furthermore, the authors apologize to the readership for any inconvenience caused. [Oncology Reports 40: 1843-1854, 2018; DOI: 10.3892/or.2018.6593].

3.
Int J Nanomedicine ; 19: 2755-2772, 2024.
Article in English | MEDLINE | ID: mdl-38525008

ABSTRACT

Purpose: The drug resistance and low response rates of immunotherapy limit its application. This study aimed to construct a new nanoparticle (CaCO3-polydopamine-polyethylenimine, CPP) to effectively deliver interleukin-12 (IL-12) and suppress cancer progress through immunotherapy. Methods: The size distribution of CPP and its zeta potential were measured using a Malvern Zetasizer Nano-ZS90. The morphology and electrophoresis tentative delay of CPP were analyzed using a JEM-1400 transmission electron microscope and an ultraviolet spectrophotometer, respectively. Cell proliferation was analyzed by MTT assay. Proteins were analyzed by Western blot. IL-12 and HMGB1 levels were estimated by ELISA kits. Live/dead staining assay was performed using a Calcein-AM/PI kit. ATP production was detected using an ATP assay kit. The xenografts in vivo were estimated in C57BL/6 mice. The levels of CD80+/CD86+, CD3+/CD4+ and CD3+/CD8+ were analyzed by flow cytometry. Results: CPP could effectively express EGFP or IL-12 and increase ROS levels. Laser treatment promoted CPP-IL-12 induced the number of dead or apoptotic cell. CPP-IL-12 and laser could further enhance CALR levels and extracellular HMGB1 levels and decrease intracellular HMGB1 and ATP levels, indicating that it may induce immunogenic cell death (ICD). The tumors and weights of xenografts in CPP-IL-12 or laser-treated mice were significantly reduced than in controls. The IL-12 expression, the CD80+/CD86+ expression of DC from lymph glands, and the number of CD3+/CD8+T or CD3+/CD4+T cells from the spleen increased in CPP-IL-12-treated or laser-treated xenografts compared with controls. The levels of granzyme B, IFN-γ, and TNF-α in the serum of CPP-IL-12-treated mice increased. Interestingly, CPP-IL-12 treatment in local xenografts in the back of mice could effectively inhibit the growth of the distant untreated tumor. Conclusion: The novel CPP-IL-12 could overexpress IL-12 in melanoma cells and achieve immunotherapy to melanoma through inducing ICD, activating CD4+ T cell, and enhancing the function of tumor-reactive CD8+ T cells.


Subject(s)
HMGB1 Protein , Melanoma , Humans , Mice , Animals , Interleukin-12 , CD8-Positive T-Lymphocytes , Melanoma/therapy , Melanoma/metabolism , HMGB1 Protein/metabolism , Immunogenic Cell Death , Mice, Inbred C57BL , Cell Proliferation , CD4-Positive T-Lymphocytes , Adenosine Triphosphate/metabolism
4.
Commun Biol ; 7(1): 215, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383737

ABSTRACT

Blocking immune checkpoint CD47/SIRPα is a useful strategy to engineer macrophages for cancer immunotherapy. However, the roles of CD47-related noncoding RNA in regulating macrophage phagocytosis for lung cancer therapy remain unclear. This study aims to investigate the effects of long noncoding RNA (lncRNA) on the phagocytosis of macrophage via CD47 and the proliferation of non-small cell lung cancer (NSCLC) via TIPRL. Our results demonstrate that lncRNA KCTD21-AS1 increases in NSCLC tissues and is associated with poor survival of patients. KCTD21-AS1 and its m6A modification by Mettl14 promote NSCLC cell proliferation. miR-519d-5p gain suppresses the proliferation and metastasis of NSCLC cells by regulating CD47 and TIPRL. Through ceRNA with miR-519d-5p, KCTD21-AS1 regulates the expression of CD47 and TIPRL, which further regulates macrophage phagocytosis and cancer cell autophagy. Low miR-519d-5p in patients with NSCLC corresponds with poor survival. High TIPRL or CD47 levels in patients with NSCLC corresponds with poor survival. In conclusion, we demonstrate that KCTD21-AS1 and its m6A modification promote NSCLC cell proliferation, whereas miR-519d-5p inhibits this process by regulating CD47 and TIPRL expression, which further affects macrophage phagocytosis and cell autophagy. This study provides a strategy through miR-519-5p gain or KCTD21-AS1 depletion for NSCLC therapy by regulating CD47 and TIPRL.


Subject(s)
Adenine , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Adenine/analogs & derivatives , Autophagy/genetics , Carcinoma, Non-Small-Cell Lung/pathology , CD47 Antigen/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Intracellular Signaling Peptides and Proteins , Lung Neoplasms/pathology , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phagocytosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
5.
Int J Mol Med ; 52(6)2023 Dec.
Article in English | MEDLINE | ID: mdl-37830154

ABSTRACT

Following the publication of the above article, an interested reader drew to the authors' attention that, in Fig. 2 on p. 1408, the microscopic images shown for the light scope images (upper row) and the green fluorescence images (lower row) appeared to be overlapping, such that these images appeared to have been derived from the same original sources even though they were intended to portray the results from differently performed experiments. After having re­examined their figures, the authors realized that this figure was assembled incorrectly. The revised version of Fig. 2, showing the correct data for all four experimental panels, is shown below. Note that the errors made during the assembly of these figures did not affect the overall conclusions reported in the paper. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish this. They also apologize to the readership for any inconvenience caused. [International Journal of Molecular Medicine 37: 1405­1411, 2016; DOI: 10.3892/ijmm.2016.2539].

6.
Int J Nanomedicine ; 18: 4381-4402, 2023.
Article in English | MEDLINE | ID: mdl-37551273

ABSTRACT

Introduction: As the special modality of cell death, immunogenic cell death (ICD) could activate immune response. Phototherapy in combination with chemotherapy (CT) is a particularly efficient tumor ICD inducing method that could overcome the defects of monotherapies. Methods: In this study, new dual stimuli-responsive micelles were designed and prepared for imaging-guided mitochondrion-targeted photothermal/photodynamic/CT combination therapy through inducing ICD. A dual-sensitive methoxy-polyethylene glycol-SS-poly(L-γ-glutamylglutamine)-SS-IR780 (mPEG-SS-PGG-SS-IR780) polymer was synthesized by grafting IR780 with biodegradable di-carboxyl PGG as the backbone, and mPEG-SS-PGG-SS-IR780/paclitaxel micelles (mPEG-SS-PGG-SS-IR780/PTXL MCs) were synthesized by encapsulating PTXL in the hydrophobic core. Results: In-vivo and -vitro results demonstrated that the three-mode combination micelles inhibited tumor growth and enhanced the therapeutic efficacy of immunotherapy. The dual stimuli-responsive mPEG-SS-PGG-SS-IR780/PTXL MCs were able to facilitate tumor cell endocytosis of nanoparticles. They were also capable of promoting micelles disintegration and accelerating PTXL release. The mPEG-SS-PGG-SS-IR780/PTXL MCs induced mitochondrial dysfunction by directly targeting the mitochondria, considering the thermo- and reactive oxygen species (ROS) sensitivity of the mitochondria. Furthermore, the mPEG-SS-PGG-SS-IR780/PTXL MCs could play the diagnostic and therapeutic roles via imaging capabilities. Conclusion: In summary, this study formulated a high-efficiency nanoscale platform with great potential in combined therapy for tumors through ICD.


Subject(s)
Micelles , Nanoparticles , Immunogenic Cell Death , Indoles/chemistry , Phototherapy/methods , Nanoparticles/chemistry , Mitochondria , Cell Line, Tumor
7.
Thorac Cancer ; 14(10): 913-928, 2023 04.
Article in English | MEDLINE | ID: mdl-36808485

ABSTRACT

BACKGROUND: The present study aimed to investigate the function of miR-3529-3p in lung adenocarcinoma and MnO2 -SiO2 -APTES (MSA) as a promising multifunctional delivery agent for lung adenocarcinoma therapy. METHODS: Expression levels of miR-3529-3p were evaluated in lung carcinoma cells and tissues by qRT-PCR. The effects of miR-3529-3p on apoptosis, proliferation, metastasis and neovascularization were assessed by CCK-8, FACS, transwell and wound healing assays, tube formation and xenografts experiments. Luciferase reporter assays, western blot, qRT-PCR and mitochondrial complex assay were used to determine the targeting relationship between miR-3529-3p and hypoxia-inducible gene domain family member 1A (HIGD1A). MSA was fabricated using MnO2 nanoflowers, and its heating curves, temperature curves, IC50, and delivery efficiency were examined. The hypoxia and reactive oxygen species (ROS) production was investigated by nitro reductase probing, DCFH-DA staining and FACS. RESULTS: MiR-3529-3p expression was reduced in lung carcinoma tissues and cells. Transfection of miR-3529-3p could promote apoptosis and suppress cell proliferation, migration and angiogenesis. As a target of miR-3529-3p, HIGD1A expression was downregulated, through which miR-3529-3p could disrupt the activities of complexes III and IV of the respiratory chain. The multifunctional nanoparticle MSA could not only efficiently deliver miR-3529-3p into cells, but also enhance the antitumor function of miR-3529-3p. The underlying mechanism may be that MSA alleviates hypoxia and has synergistic effects in cellular ROS promotion with miR-3529-3p. CONCLUSIONS: Our results establish the antioncogenic role of miR-3529-3p, and demonstrate that miR-3529-3p delivered by MSA has enhanced tumor suppressive effects, probably through elevating ROS production and thermogenesis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Nanoparticles , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Silicon Dioxide/metabolism , Manganese Compounds , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Oxides/pharmacology , Oxides/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Cell Proliferation/genetics , Phototherapy , Gene Expression Regulation, Neoplastic
8.
Int J Pharm ; 631: 122488, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36521638

ABSTRACT

Reduced drug uptake and elevated drug efflux are two major mechanisms in cancer multidrug resistance (MDR). In the present study, a new multistage O2-producing liposome with NAG/R8-dual-ligand and stimuli-responsive dePEGylation was developed to address the abovementioned issues simultaneously. The designed C-NAG-R8-PTXL/MnO2-lip could also achieve magnetic resonance imaging (MRI)-guided synergistic chemodynamic/chemotherapy (CDT/CT). In vitro and in vivo studies showed that C-NAG-R8-PTXL/MnO2-lip enhanced circulation time by PEG and targeted the tumor site. After tumor accumulation, endogenous l-cysteine was administered, and the PEG-attached disulfide bond was broken, resulting in the dissociation of PEG shells. The previously hidden positively charged R8 by different lengths of PEG chains was exposed and mediated efficient internalization. In addition, the oxygen (O2) generated by C-NAG-R8-PTXL/MnO2-lip relieved the hypoxic environment within the tumor, thus reducing the efflux of chemotherapeutic drug. O2 was able to burst liposomes and triggered the release of PTXL. The toxic hydroxyl radical (·OH), which was produced by H2O2 and Mn2+, strengthened CDT/CT. C-NAG-R8-PTXL/MnO2-lip was also used as MRI contrast agent, which blazed the trail to rationally design theranostic agents for tumor imaging.


Subject(s)
Liposomes , Neoplasms , Humans , Liposomes/chemistry , Manganese Compounds/chemistry , Cell Line, Tumor , Hydrogen Peroxide , Oxides/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/pathology , Drug Resistance, Multiple , Oxygen , Magnetic Resonance Imaging , Tumor Microenvironment , Theranostic Nanomedicine
9.
Front Oncol ; 12: 1032850, 2022.
Article in English | MEDLINE | ID: mdl-36387210

ABSTRACT

Long non-coding RNAs (lncRNAs) modulate cell proliferation, cycle, and apoptosis. However, the role of lncRNA-WFDC21P in the tumorigenesis of triple-negative breast cancer (TNBC) remains unclear. Results of this study demonstrated that WFDC21P levels significantly increased in TNBC, which was associated with the poor survival of patients. WFDC21P overexpression significantly promoted TNBC cell proliferation and metastasis. WFDC21P interacted with miR-628-5p, which further suppressed cell proliferation and metastasis by negatively regulating Smad3-related gene expression. Recovery of miR-628-5p weakened the roles of WFDC21P in promoting the growth and metastasis of TNBC cells. Moreover,N6-methyladenosine (m6A) modification upregulated WFDC21P expression in the TNBC cells. WFDC21P and its m6A levels were increased after methyltransferase like 3 (METTL3) overexpression but reduced after METTL3 silencing. The proliferation and metastasis of TNBC cells were promoted by METTL3 overexpression but suppressed by METTL3 silencing. This study demonstrated the vital roles of WFDC21P and its m6A in regulating the proliferation and metastasis of TNBC cells via the WFDC21P/miR-628/SMAD3 axis.

10.
Cell Death Discov ; 8(1): 306, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790734

ABSTRACT

PKM2 is an important regulator of the aerobic glycolysis that plays a vital role in cancer cell metabolic reprogramming. In general, Trib2 is considered as a "pseudokinase", contributing to different kinds of cancer. However, the detailed roles of TRIB2 in regulating cancer metabolism by PKM2 remain unclear. This study demonstrated that TRIB2, not a "pseudokinase", has the kinase activity to directly phosphorylate PKM2 at serine 37 in cancer cells. The elevated pSer37-PKM2 would subsequently promote the PKM2 dimers to enter into nucleus and increase the expression of LDHA, GLUT1, and PTBP1. The aerobic glycolysis is then elevated to promote cancer cell proliferation and migration in TRIB2- or PKM2-overexpressed cultures. The glucose uptake and lactate production increased, but the ATP content decreased in TRIB2- or PKM2-treated cultures. Experiments of TRIB2-/- mice further supported that TRIB2 could regulate aerobic glycolysis by PKM2. Thus, these results reveal the new kinase activity of TRIB2 and its mechanism in cancer metabolism may be related to regulating PKM2 to promote lung cancer cell proliferation in vitro and in vivo, suggesting promising therapeutic targets for cancer therapy by controlling cancer metabolism.

11.
J Biomed Nanotechnol ; 18(3): 763-777, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35715902

ABSTRACT

Although the development of safe and efficient cancer therapeutic agents is essential, this process remains challenging. In this study, a mitochondria-targeted degradable nanoplatform (PDA-MnO2-IR780) for synergistic photothermal, photodynamic, and sonodynamic tumor treatment was investigated. PDA-MnO2-IR780 exhibits superior photothermal properties owing to the integration of polydopamine, MnO2, and IR780. IR780, a photosensitizer and sonosensitizer, was used for photodynamic therapy and sonodynamic therapy. When PDA-MnO2-IR780 was delivered to the tumor site, MnO2 was decomposed by hydrogen peroxide, producing Mn2+ and oxygen. Meanwhile, alleviating tumor hypoxia promoted the production of reactive oxygen species during photodynamic therapy and sonodynamic therapy. Moreover, large amounts of reactive oxygen species could reduce the expression of heat shock proteins and increase the heat sensitivity of tumor cells, thereby improving the photothermal treatment effect. In turn, hyperthermia caused by photothermal therapy accelerated the production of reactive oxygen species in photodynamic therapy. IR780 selectively accumulation in mitochondria also promoted tumor apoptosis. In this system, the mutual promotion of photothermal therapy and photodynamic therapy/sonodynamic therapy had an enhanced therapeutic effect. Moreover, the responsive degradable characteristic of PDA-MnO2-IR780 in the tumor microenvironment ensured excellent biological safety. These results reveal a great potential of PDA-MnO2-IR780 for safe and highly-efficiency synergistic therapy for cancer.


Subject(s)
Nanocomposites , Nanoparticles , Photochemotherapy , Cell Line, Tumor , Lasers , Manganese Compounds/metabolism , Mitochondria/metabolism , Nanocomposites/therapeutic use , Nanoparticles/therapeutic use , Oxides , Photochemotherapy/methods , Reactive Oxygen Species
12.
J Biomed Nanotechnol ; 18(2): 352-368, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35484752

ABSTRACT

The construction of high-efficiency tumor theranostic platform will be of great interest in the treatment of cancer patients; however, significant challenges are associated with developing such a platform. In this study, we developed high-efficiency nanotheranostic agent based on ferroferric oxide, manganese dioxide, hyaluronic acid and doxorubicin (FMDH-D NPs) for dual targeting and imaging guided synergetic photothermal-enhanced chemodynamic/chemotherapy for cancer, which improved the specific uptake of drugs at tumor site by the dual action of CD44 ligand hyaluronic acid and magnetic nanoparticles guided by magnetic force. Under the acidic microenvironment of cancer cells, FMDH-D could be decomposed into Mn2+ and Fe2+ to generate •OH radicals by triggering a Fenton-like reaction and responsively releasing doxorubicin to kill cancer cells. Meanwhile, alleviating tumor hypoxia improved the efficacy of chemotherapy in tumors. The photothermal properties of FMDH generated high temperatures, which further accelerated the generation of reactive oxygen species, and enhanced effects of chemodynamic therapy. Furthermore, FMDH-D NPs proved to be excellent T1/T2-weighted magnetic resonance imaging contrast agents for monitoring the tumor location. These results confirmed the considerable potential of FMDH-D NPs in a highly efficient synergistic therapy platform for cancer treatment.


Subject(s)
Manganese Compounds , Neoplasms , Doxorubicin/pharmacology , Humans , Hyaluronic Acid , Magnetic Resonance Imaging , Manganese Compounds/pharmacology , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Oxides , Tumor Microenvironment
13.
Front Oncol ; 11: 733175, 2021.
Article in English | MEDLINE | ID: mdl-34646775

ABSTRACT

RFWD2, an E3 ubiquitin ligase, is overexpressed in numerous human cancers, including leukemia, lung cancer, breast cancer, renal cell carcinoma, and colorectal cancer. The roles of RFWD2 in cancer are related to the targeting of its substrates for ubiquitination and degradation. This study aimed to investigate the role of TRIB2 in relation to the regulation of protein degradation through RFWD2. inBio Discover™ results demonstrated that TRIB2 can perform its functions by interacting with RFWD2 or other factors. TRIB2 can interact with and regulate RFWD2, which further attends the proteasome-mediated degradation of the RFWD2 substrate p-IκB-α. TRIB2 colocalizes with RFWD2-related IκB-α to form a ternary complex and further affects the IκB-α degradation by regulating its phosphorylation. Specific domain analysis showed that TRIB2 may bind to RFWD2 via its C-terminus, whereas it binds to IκB via its pseudokinase domain. TRIB2 acts as an oncogene and promotes cancer cell proliferation and migration, whereas RFWD2 knockdown reversed the role of TRIB2 in promoting cancer cell growth and colony formation in vitro and in vivo. In summary, this study reveals that TRIB2 promotes the progression of cancer by affecting the proteasome-mediated degradation of proteins through the interaction with RFWD2.

14.
Cell Death Dis ; 12(8): 735, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301920

ABSTRACT

Non-coding RNAs (ncRNAs) involve in diverse biological processes by post-transcriptional regulation of gene expression. Emerging evidence shows that miRNA-4293 plays a significant role in the development of non-small cell lung cancer. However, the oncogenic functions of miR-4293 have not been studied. Our results demonstrated that miR-4293 expression is markedly enhanced in lung carcinoma tissue and cells. Moreover, miR-4293 promotes tumor cell proliferation and metastasis but suppresses apoptosis. Mechanistic investigations identified mRNA-decapping enzyme 2 (DCP2) as a target of miR-4293 and its expression is suppressed by miR-4293. DCP2 can directly or indirectly bind to WFDC21P and downregulates its expression. Consequently, miR-4293 can further promote WFDC21P expression by regulating DCP2. With a positive correlation to miR-4293 expression, WFDC21P also plays an oncogenic role in lung carcinoma. Furthermore, knockdown of WFDC21P results in functional attenuation of miR-4293 on tumor promotion. In vivo xenograft growth is also promoted by both miR-4293 and WFDC21P. Overall, our results establish oncogenic roles for both miR-4293 and WFDC21P and demonstrate that interactions between miRNAs and lncRNAs through DCP2 are important in the regulation of carcinoma pathogenesis. These results provided a valuable theoretical basis for the discovery of lung carcinoma therapeutic targets and diagnostic markers based on miR-4293 and WFDC21P.


Subject(s)
Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Up-Regulation/genetics , Adult , Aged , Animals , Apoptosis/genetics , Base Sequence , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Knockdown Techniques , Humans , Male , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Middle Aged , Models, Biological , Protein Binding , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT3 Transcription Factor/metabolism
15.
J Control Release ; 336: 396-409, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34175367

ABSTRACT

The emergence of multidrug resistance (MDR) in malignant tumors is the primary reason for invalid chemotherapy. Antitumor drugs are often adversely affected by the MDR of tumor cells. Treatments using conventional drugs, which have specific drug targets, hardly regulate the complex signaling pathway of MDR cells because of the complex formation mechanism of MDR. However, natural products have positive advantages, such as high efficiency, low toxicity, and ability to target multiple mechanism pathways associated with MDR. Natural products, as MDR reversal agents, synergize with chemotherapeutics and enhance the sensitivity of tumor cells to chemotherapeutics, and the co-delivery of natural products and antitumor drugs with nanocarriers maximizes the synergistic effects against MDR in tumor cells. This review summarizes the molecular mechanisms of MDR, the advantages of natural products combined with chemotherapeutics in offsetting complicated MDR mechanisms, and the types and mechanisms of natural products that are potential MDR reversal modulators. Meanwhile, aiming at the low bioavailability of cocktail combined natural products and chemotherapeutic in vivo, the advantages of nanoplatform-based co-delivery system and recent research developments are illustrated on the basis of our previous research. Finally, prospective horizons are analyzed, which are expected to considerably improve the nano-co-delivery of natural products and chemotherapeutic systems for MDR reversal in cancer.


Subject(s)
Antineoplastic Agents , Biological Products , Neoplasms , Antineoplastic Agents/therapeutic use , Biological Products/therapeutic use , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , Neoplasms/drug therapy , Prospective Studies
16.
Dev Comp Immunol ; 117: 103981, 2021 04.
Article in English | MEDLINE | ID: mdl-33340592

ABSTRACT

Peritrophic membrane (PM) refers to a vital physical barrier enabling shrimp to resist pathogen invasion. It primarily consists of chitin and proteins, mostly chitin-binding protein (CBP). CBPs have been identified from microorganisms to higher organisms. In the present study, a CBP, designated MjCBP, was reported from Marsupenaeus japonicus. The open reading frame of MjCBP was 1854 bp, encoding a protein with 618 amino acids (MH544098). To be specific, the theoretical pI and molecular mass of mature MjCBP reached 5.43 and 66064.00 Da, respectively. MjCBP consisted of seven type Ⅱ chitin-binding domains (ChtB D2), which was up-regulated after being challenged with Vibrio anguillarum and then agglutinating several bacteria. In addition, MjCBP and the first chitin-binding domain (CBD1) could bind to several Gram-positive and Gram-negative bacteria via the binding process to lipopolysaccharides and peptidoglycans, whereas CBD1 was not capable of agglutinating bacteria. Moreover, the anterior and posterior segments of CBD1 were synthesized in vitro, and the posterior segment could bind to lipopolysaccharides. However, both segments fail to agglutinate bacteria. Furthermore, MjCBP and CBD1 facilitated the clearance of V. anguillarum in vivo, and the silencing of MjCBP via RNA interference reduced the ability of bacterial clearance. As revealed from the mentioned results, MjCBP acts as an opsonin or pattern recognition receptor to achieve antibacterial immune response in shrimp.


Subject(s)
Arthropod Proteins/immunology , Carrier Proteins/immunology , Chitin/metabolism , Immunity, Innate/immunology , Penaeidae/immunology , Vibrio/immunology , Amino Acid Sequence , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Carrier Proteins/classification , Carrier Proteins/genetics , Gene Expression Profiling/methods , Hemocytes/immunology , Hemocytes/metabolism , Hemocytes/microbiology , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Penaeidae/genetics , Penaeidae/microbiology , Protein Binding , RNA Interference , Sequence Homology, Amino Acid , Vibrio/metabolism , Vibrio/physiology
17.
Mol Genet Genomic Med ; 8(7): e1299, 2020 07.
Article in English | MEDLINE | ID: mdl-32394637

ABSTRACT

BACKGROUND: Long noncoding (lncRNA) single-nucleotide polymorphisms (SNPs) are associated with the susceptibility to the development of various malignant tumors. The aim of this study was to investigate the roles of HOX transcript antisense intergenic RNA (HOTAIR) and its SNPs in lung cancer. METHODS: Initially, the expression of HOTAIR in different tumors was investigated using the online Gene Expression Profiling Interactive Analysis (GEPIA) resource. Three SNPs (rs920778, rs1899663, and rs4759314) of HOTAIR were identified using the MassArray system. Following this, the relationship between these SNPs and susceptibility to lung cancer was investigated. RESULTS: Expression of HOTAIR was found to increase in a variety of cancers, including nonsmall cell lung cancer (NSCLC). We found that the genotypes of these SNPs (rs920778, rs1899663, and rs4759314) were not significantly associated with lung cancer type, family history, lymph node metastasis, or lung cancer stage. In gender stratification, the results of rs920778 genotypes showed that, compared to genotype AA, the AG (OR = 0.344, 95% CI: 0.133-0.893, p = .028) and AG + GG (OR = 0.378, 95% CI: 0.153-0.932, p = .035) genotypes of rs920778 are protective factors against NSCLC in females. In smoking stratification, compared with AA of rs920778, the genotype AG + GG (OR = 0.507, 95% CI: 0.263-0.975, p = .042) was a protective factor against NSCLC in nonsmoking people. No statistical differences were observed in the classifications of rs1899663 and rs4759314 genotypes. Linkage disequilibrium analysis revealed a high linkage disequilibrium between the rs920778 and rs1899663 (D' = 0.99, r2  = .74), rs920778 and rs4759314 (D' = 0.85, r2  = .13), and rs1899663 and rs4759314 (D' = 0.79, r2  = .00). CONCLUSION: Our study demonstrated that HOTAIR expression increased in NSCLC, and that the genotypes of rs920778 could be useful in the diagnosis and prognosis of lung cancer.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Female , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Lung Neoplasms/pathology , Male , Middle Aged , Prognosis , RNA, Long Noncoding/metabolism
18.
Fish Shellfish Immunol ; 98: 354-363, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31945483

ABSTRACT

L-type lectins (LTLs) belong to the lectin family and are characterized by a conserved structural motif in their carbohydrate recognition domain. LTLs are homologous to leguminous lectins. In this study, we identified and functionally characterized an LTL from kuruma shrimp Marsupenaeus japonicus. We designated this LTL as MjLTL2. MjLTL2 contains a signal peptide, a Lectin_leg domain, a coiled coil, and transmembrane domain. MjLTL2 is distributed in hemocytes, heart, hepatopancreas, gill, stomach, and intestine; higher expression levels are seen in hemocytes and the hepatopancreas than in other tissues. MjLTL2 was upregulated following challenge of shrimp with Vibrio anguillarum and white spot syndrome virus (WSSV). MjLTL2 can agglutinate several bacteria without Ca2+. In addition, MjLTL2 could bind to several Gram-positive and -negative bacteria by binding to their lipopolysaccharide and peptidoglycan. However, MjLTL2 could not enhance the clearance of V. anguillarum in vivo. In the presence of WSSV infection, MjLTL2 knockdown by RNA interference resulted in a 7-day lower cumulative mortality of M. japonicus. Moreover, less VP19, VP24, VP26, and VP28 mRNAs were extracted from the hemocytes of MjLTL2 knockdown shrimp than from the control. These results suggest that MjLTL2 is involved in immune responses in shrimp.


Subject(s)
Arthropod Proteins/metabolism , Lectins/metabolism , Penaeidae/immunology , Agglutination Tests , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Disease Resistance/genetics , Gene Expression Regulation , Immunity, Innate , Lectins/chemistry , Lectins/genetics , Penaeidae/classification , Penaeidae/genetics , Phylogeny , Polysaccharides, Bacterial/metabolism , Sequence Alignment , Survival Rate , Tissue Distribution , Vibrio/physiology , Virus Replication , White spot syndrome virus 1/physiology
19.
Oncol Rep ; 43(2): 447-460, 2020 02.
Article in English | MEDLINE | ID: mdl-31894279

ABSTRACT

Endometrial cancer (EC) is a common form of cancer in women. Metastasis is the main cause of EC treatment failure. Eukaryotic translation initiation factor 4E (eIF4E) is an oncogene that is overexpressed in a variety of malignancies and their distant metastases. The present study analyzed microarray data from the Oncomine database and revealed that high eIF4E expression was associated with poor prognosis and high pathological grade of EC. The expression of eIF4E was higher in EC tissues compared with in adjacent normal tissues. In addition, microRNA (miR)­320a and miR­340­5p expression levels were downregulated in EC tissues compared with those in adjacent normal tissues, which suggested that these microRNAs may serve as EC tumor suppressor genes. miR­320a and miR­340­5p could bind to the 3'­UTR of eIF4E mRNA, thus downregulating the expression of eIF4E and phosphorylated (p)­eIF4E in EC cells. Overexpression of miR­320a or miR­340­5p effectively suppressed HEC­1A cell migration and invasion. The downregulation of eIF4E and p­eIF4E following miR­320a or miR­340­5p transfection reduced the invasiveness and metastatic capability of EC cells in a manner associated with decreased expression of matrix metallopeptidase (MMP)­3 and MMP­9. In addition, one of the effects of transforming growth factor ß1 (TGF­ß1), which is to induce the phosphorylation of eIF4E, was suppressed by miR­320a and miR­340­5p overexpression. These two microRNAs also attenuated the features of TGF­ß1­induced epithelial­mesenchymal transition (EMT). In conclusion, the results of the present study demonstrated that eIF4E was upregulated in EC, whereas miR­320a and miR­340­5p were downregulated in EC compared with adjacent normal tissues. In vitro, miR­320a and miR­340­5p inhibited the migratory capability of EC cells by downregulating MMP­3 and MMP­9 and prevented TGF­ß1­induced EMT through p­eIF4E.


Subject(s)
Endometrial Neoplasms/pathology , Eukaryotic Initiation Factor-4E/genetics , MicroRNAs/genetics , Cell Line, Tumor , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Epithelial-Mesenchymal Transition , Eukaryotic Initiation Factor-4E/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Grading , Neoplasm Metastasis , Prognosis , Survival Analysis , Transforming Growth Factor beta1/metabolism
20.
Mol Med Rep ; 20(4): 3355-3362, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31432162

ABSTRACT

MicroRNAs (miRNAs/miRs) serve important roles in the chemotherapeutic effect of anticancer drugs. To investigate the roles of miRNAs in cisplatin­induced suppression of lung adenocarcinoma cell proliferation, A549 cells were treated with different concentrations of cisplatin. An MTT assay demonstrated that cisplatin inhibited A549 cell proliferation in a dose­dependent manner. Cisplatin induced cell apoptosis and inhibited cell migration by increasing the levels of miR­93, miR­26a and miR­26b. Furthermore, as an upstream factor, miR­93 was proposed to regulate cyclin D2 expression in miR­93­transfected A549 cells. Cisplatin also induced Bcl­2­associated X protein expression, and decreased that of Bcl­2 and c­Myc in lung adenocarcinoma cells. In vivo analysis further supported that cisplatin inhibited lung adenocarcinoma cell growth by regulating cyclin D2 and miR­93 expression. In conclusion, our findings demonstrated that cisplatin could effectively inhibit lung adenocarcinoma cell proliferation by decreasing cyclin D2 expression via miR­93.


Subject(s)
Adenocarcinoma of Lung/metabolism , Cisplatin/pharmacology , Cyclin D2/biosynthesis , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/metabolism , MicroRNAs/biosynthesis , Neoplasm Proteins/biosynthesis , RNA, Neoplasm/biosynthesis , Up-Regulation/drug effects , A549 Cells , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...