Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Plant Sci ; 346: 112163, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38880339

ABSTRACT

A20/AN1 zinc-finger domain-containing genes are very promising candidates in improving plant tolerance to abiotic stresses, but considerably less is known about functions and mechanisms for many of them. In this study, Metip3 (5, and 7), cassava (Manihot esculenta) A20/AN1 genes carrying one A20 domain and one AN1 domain, were functionally characterized at different layers. Metip3 (5, and 7) proteins were all located in the nucleus. No interactions were found between these three proteins. Metip3 (5, and 7)-expressing Arabidopsis was more tolerant to multiple abiotic stresses by Na, Cd, Mn, Al, drought, high temperature, and low temperature. Metip3- and Metip5-expressing Arabidopsis was sensitive to Cu stress, while Metip7-expressing Arabidopsis was insensitive. The H2O2 production significantly decreased in all transgenic Arabidopsis, however, O2·- production significantly decreased in Metip3- and Metip5-expressing Arabidopsis but did not significantly changed in Metip7-expressing Arabidopsis under drought. Metip3 (5, and 7) expression-silenced cassava showed the decreased tolerance to drought and NaCl, presented significant decreases in superoxide dismutase and catalase activities and proline content, and displayed a significant increase in malondialdehyde content under drought. Taken together with transcriptome sequencing analysis, it is suggested that Metip5 gene can not only affect signal transduction related to plant hormone, mitogen activated protein kinases, and starch and sucrose metabolism, DRE-binding transcription factors, and antioxidants, conferring the drought tolerance, but also might deliver the signals from DREB2A INTERACTING PROTEIN1, E3 ubiquitin-protein ligases to proteasome, leading to the drought intolerance. The results are informative not only for further study on evolution of A20/AN1 genes but also for development of climate resilient crops.


Subject(s)
Arabidopsis , Manihot , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Manihot/genetics , Manihot/physiology , Stress, Physiological/genetics , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Droughts , Genes, Plant , Multigene Family
2.
Sci Rep ; 13(1): 7375, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147346

ABSTRACT

The genes enconding proteins containing plasma membrane proteolipid 3 (PMP3) domain are responsive to abiotic stresses, but their functions in maize drought tolerance remain largely unknown. In this study, the transgenic maize lines overexpressing maize ZmPMP3g gene were featured by enhanced drought tolerance; increases in total root length, activities of superoxide dismutase and catalase, and leaf water content; and decreases in leaf water potential, levels of O2-·and H2O2, and malondialdehyde content under drought. Under treatments with foliar spraying with abscisic acid (ABA), drought tolerance of both transgenic line Y7-1 overexpressing ZmPMP3g and wild type Ye478 was enhanced, of which Y7-1 showed an increased endogenous ABA and decreased endogenous gibberellin (GA) 1 (significantly) and GA3 (very slightly but not significantly) and Ye478 had a relatively lower ABA and no changes in GA1 and GA3. ZmPMP3g overexpression in Y7-1 affected the expression of multiple key transcription factor genes in ABA-dependent and -independent drought signaling pathways. These results indicate that ZmPMP3g overexpression plays a role in maize drought tolerance by harmonizing ABA-GA1-GA3 homeostasis/balance, improving root growth, enhancing antioxidant capacity, maintaining membrane lipid integrity, and regulating intracellular osmotic pressure. A working model on ABA-GA-ZmPMP3g was proposed and discussed.


Subject(s)
Drought Resistance , Zea mays , Zea mays/genetics , Zea mays/metabolism , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Abscisic Acid/metabolism , Stress, Physiological , Droughts , Water/metabolism , Gene Expression Regulation, Plant
3.
Plants (Basel) ; 12(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36904053

ABSTRACT

Water level rise is considered an environmental filter for the growth and reproduction of aquatic plants in lakes. Some emergent macrophytes can form floating mats, enabling them to escape from the negative effects of deep water. However, an understanding of which species can be uprooted and form floating mats easily and what factors affect these tendencies remains greatly elusive. We conducted an experiment to determine whether the monodominance of Zizania latifolia in the emergent vegetation community in Lake Erhai was related to its floating mat formation ability and to try to find the reasons for its floating mat formation ability during the continuous increase in water level over the past few decades. Our results showed that both the frequency and biomass proportion of Z. latifolia were greater among the plants on the floating mats. Furthermore, Z. latifolia was more likely to be uprooted than the other three previously dominant emergent species due to its smaller angle between the plant and the horizontal plane, rather than the root:shoot or volume:mass ratios. The dominance of Z. latifolia in the emergent community in Lake Erhai is due to its easier ability to become uprooted, allowing it to outperform other emergent species and become the single dominant emergent species under the environmental filter of deep water. The ability to uproot and form floating mats may be a competitive survival strategy for emergent species under the conditions of continuous significant water level rise.

4.
AoB Plants ; 15(1): plac057, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36654987

ABSTRACT

The proteins with DNA-binding preference to the consensus DNA sequence (A/T) GATA (A/G) belong to a GATA transcription factor family, with a wide array of biological processes in plants. Cassava (Manihot esculenta) is an important food crop with high production of starch in storage roots. Little was however known about cassava GATA domain-containing genes (MeGATAs). Thirty-six MeGATAs, MeGATA1 to MeGATA36, were found in this study. Some MeGATAs showed a collinear relationship with orthologous genes of Arabidopsis, poplar and potato, rice, maize and sorghum. Eight MeGATA-encoded proteins (MeGATAs) analysed were all localized in the nucleus. Some MeGATAs had potentials of binding ligands and/or enzyme activity. One pair of tandem-duplicated MeGATA17-MeGATA18 and 30 pairs of whole genome-duplicated MeGATAs were found. Fourteen MeGATAs showed low or no expression in the tissues. Nine analysed MeGATAs showed expression responses to abiotic stresses and exogenous phytohormones. Three groups of MeGATA protein interactions were found. Fifty-three miRNAs which can target 18 MeGATAs were identified. Eight MeGATAs were found to target other 292 cassava genes, which were directed to radial pattern formation and phyllome development by gene ontology enrichment, and autophagy by Kyoto Encyclopaedia of Genes and Genomes enrichment. These data suggest that MeGATAs are functional generalists in interactions between cassava growth and development, abiotic stresses and starch metabolism.

5.
Plant Physiol Biochem ; 194: 394-405, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36481708

ABSTRACT

The sugar transporter SWEET plays a role in plant growth, carbon allocation, and abiotic stress resistance. We examined the function of SWEET in cassava (Manihot esculenta Crantz) under water and salt stress. Bioinformatics, subcellular localization, yeast deficient complementation, and virus-induced gene silencing (VIGS) were used to examine the function of SWEET in cassava. Twenty-eight MeSWEETs genes were found based on the conserved domain MtN3/saliva of SWEET transporters, two MeSWEET15a/b of them were identified by phylogenetic analysis, which were located on the cell membrane. They transfer sucrose, fructose, glucose, and mannitol from culture media to yeast cells, predominately transferring sucrose via bleeding fluid saps in plant. Leaf sucrose content was increased in MeSWEET15a/b-silenced cassava plants, resulting in changes in carbon distribution, with an increase in starch accumulation in the leaves and a decrease in starch accumulation in the roots. The silencing of MeSWEET15a/b genes led to tolerance to water and salt stress, consistent with a high accumulation of osmolytes, and low lipid membrane peroxidation. Changes in sugar distribution increased the expression of MeTOR and MeE2Fa in pTRV2-MeSWEET15a and pTRV2-MeSWEET15b cassava leaves. MeSWEET15a/b acts as pivotal modulators of sugar distribution and tolerance to water and high salt stress in cassava.


Subject(s)
Manihot , Water , Water/metabolism , Sugars/metabolism , Manihot/genetics , Manihot/metabolism , Phylogeny , Saccharomyces cerevisiae/metabolism , Starch/metabolism , Salt Stress , Sucrose/metabolism
6.
Plant Sci ; 327: 111543, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36427558

ABSTRACT

High air temperature (HAT) and natural soil drought (NSD) have seriously affected crop yield and frequently take place in a HAT-NSD combination. Maize (Zea mays) is an important crop, thermophilic but not heat tolerant. In this study, HAT, NSD, and HAT-NSD effects on maize inbred line Huangzao4 -were characterized. Main findings were as follows: H2O2 and O- accumulated much more in immature young leaves than in mature old leaves under the stresses. Lateral roots were highly distributed near the upper pot mix layers under HAT and near root tips under HAT-NSD. Saccharide accumulated mainly in stressed root caps (RC) and formed a highly accumulated saccharide band at the boundary between RC and meristematic zone. Lignin deposition was in stressed roots under NSD and HAT-NSD. Chloroplasts increased in number and formed a high-density ring around leaf vascular bundles (VB) under HAT and HAT-NSD, and sparsely scattered in the peripheral area of VBs under NSD. The RC cells containing starch granules were most under NAD-HAT but least under HAT. Under NSD and HAT-NSD followed by re-watering, anther number per tassel spikelet reduced to 3. These results provide multiple clues for further distinguishing molecular mechanisms for maize to tolerate these stresses.


Subject(s)
Droughts , Zea mays , Hydrogen Peroxide , Temperature , Plant Leaves , Soil
7.
Cell Res ; 32(12): 1068-1085, 2022 12.
Article in English | MEDLINE | ID: mdl-36357786

ABSTRACT

The emerging SARS-CoV-2 variants, commonly with many mutations in S1 subunit of spike (S) protein are weakening the efficacy of the current vaccines and antibody therapeutics. This calls for the variant-proof SARS-CoV-2 vaccines targeting the more conserved regions in S protein. Here, we designed a recombinant subunit vaccine, HR121, targeting the conserved HR1 domain in S2 subunit of S protein. HR121 consisting of HR1-linker1-HR2-linker2-HR1, is conformationally and functionally analogous to the HR1 domain present in the fusion intermediate conformation of S2 subunit. Immunization with HR121 in rabbits and rhesus macaques elicited highly potent cross-neutralizing antibodies against SARS-CoV-2 and its variants, particularly Omicron sublineages. Vaccination with HR121 achieved near-full protections against prototype SARS-CoV-2 infection in hACE2 transgenic mice, Syrian golden hamsters and rhesus macaques, and effective protection against Omicron BA.2 infection in Syrian golden hamsters. This study demonstrates that HR121 is a promising candidate of variant-proof SARS-CoV-2 vaccine with a novel conserved target in the S2 subunit for application against current and future SARS-CoV-2 variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Mice , Humans , Rabbits , SARS-CoV-2 , Macaca mulatta , Mesocricetus , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , Antibodies, Neutralizing , Mice, Transgenic , Antibodies, Viral
8.
Sci Adv ; 8(36): eabq5108, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36083908

ABSTRACT

Nucleotide-binding, leucine-rich repeat receptors (NLRs) perceive pathogen effectors to trigger plant immunity. The direct recognition mechanism of pathogen effectors by coiled-coil NLRs (CNLs) remains unclear. We demonstrate that the Triticum monococcum CNL Sr35 directly recognizes the pathogen effector AvrSr35 from Puccinia graminis f. sp. tritici and report a cryo-electron microscopy structure of Sr35 resistosome and a crystal structure of AvrSr35. We show that AvrSr35 forms homodimers that are disassociated into monomers upon direct recognition by the leucine-rich repeat domain of Sr35, which induces Sr35 resistosome assembly and the subsequent immune response. The first 20 amino-terminal residues of Sr35 are indispensable for immune signaling but not for plasma membrane association. Our findings reveal the direct recognition and activation mechanism of a plant CNL and provide insights into biochemical function of Sr35 resistosome.

9.
Chem Biodivers ; 19(3): e202100897, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35083849

ABSTRACT

A new lignan (4,4',5'-trihydroxy-5,3'-dimethoxy-3-O-9',2-(7'R)-lignan, 1) and eight C(6)-oxygenated flavonoids (2-9), including a newly identified flavonoid (7,3',4'-trihydroxy-3,5,6-trimethoxyflavone, 2), were isolated from the inflorescence of Ambrosia artemisiifolia L. The structures of these isolates were determined using extensive spectroscopic analyses and comparison with data previously reported in the literature. The absolute configuration of compound 1 was established using electronic circular dichroism (ECD) spectrum. All the flavonoids (2-9) showed inhibitory effects on LPS-induced NO production in RAW264.7 cells, with the inhibition rate ranging from 24.51 % to 69.82 % at 50 µM. The in vitro cytotoxicity study showed that compounds 3-8 have a 60 % inhibition rate against SMMC-7721 at a concentration of 40 µM, while compounds 5 and 8 also exhibited inhibitory activity against HL-60 at 40 µM with the inhibition rate of 83.36 % and 52.01 %, respectively.


Subject(s)
Ambrosia , Lignans , Ambrosia/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Inflorescence , Lignans/chemistry , Lignans/pharmacology , Molecular Structure
10.
Chemosphere ; 286(Pt 1): 131591, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34303053

ABSTRACT

Drinking water safety cannot be overemphasized. Filamentous fungi have many excellent features for metal removal. Both graphene oxide (GO) and activated carbon (AC) are conventional metal adsorbents, but they are not suitable for large-scale use due to high cost. In this study, a low dosage of conidia (2.0 × 104 conidia/mL) of metal-resistant/adapted filamentous fungus Penicillium janthinillum strain GXCR were co-immobilized with a low dosage of 0.5 mg/L GO or 0.5 mg/L AC by embedding in 2% polyvinyl alcohol (PVA)-3% sodium alginate (SA), generating six types of microbead adsorbents (MBAs) to remove metals from a low concentration of either single metal (100 mg/L) or mixed metals (100 mg/L each) of Pb (II), Fe (III) and Cu (II) in drinking water. Fungus GXCR-containing MBAs had higher specific surface areas (SSAs), better mesoporous structures, and a higher removal rate (85-98.99%) of single or mixed metals. Singl-metal adsorptions of MBAs were almost unaffected by temperature changes. MBAs showed a stable removal rate of 87-94% during four cycles of adsorption-desorption of single metal. Single-metal adsorptions were well described by multiple models of Freundlich isotherm with constant values of 0.21-0.432, Langmuir isotherm with constant values of 0.037-0.17, Pseudo-fist-order, Pseudo-second-order, and intra-particle diffusion (IPD). In conclusion, co-immobilization between GXCR, GO and AC can make metal removal more efficient. Adsorption capacity is increased with SSAs but not in the same proportion. Single-metal adsorptions involve multiple mechanisms of monolayer and multilayer adsorptions, external mass transfer, and IPD. IPD is important but not the only one rate-controlling step for single-metal adsorptions.


Subject(s)
Drinking Water , Penicillium , Water Pollutants, Chemical , Adsorption , Charcoal , Ferric Compounds , Graphite , Kinetics , Lead , Water Pollutants, Chemical/analysis
11.
AoB Plants ; 13(5): plab048, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34567492

ABSTRACT

Flowering in maize (Zea mays) is influenced by photoperiod. The CO, CO-like/COL and TOC1 (CCT) domain protein-encoding genes in maize, ZmCCTs, are particularly important for photoperiod sensitivity. However, little is known about CCT protein-encoding gene number across plant species or among maize inbred lines. Therefore, we analysed CCT protein-encoding gene number across plant species, and characterized ZmCCTs in different inbred lines, including structural variations (SVs), copy number variations (CNVs), expression under stresses, dark-dark (DD) and dark-light (DL) cycles, interaction network and associations with maize quantitative trait loci (QTLs) by referring to the latest v4 genome data of B73. Gene number varied greatly across plant species, more in polyploids than in diploids. The numbers of ZmCCTs identified were 58 in B73, 59 in W22, 48 in Mo17, and 57 in Huangzao4 for temperate maize inbred lines, and 68 in tropical maize inbred line SK. Some ZmCCTs underwent duplications and presented chromosome collinearity. Structural variations and CNVs were found but they had no germplasm specificity. Forty-two ZmCCTs responded to stresses. Expression of 37 ZmCCTs in embryonic leaves during seed germination of maize under DD and DL cycles was roughly divided into five patterns of uphill pattern, downhill-pattern, zigzag-pattern, └-pattern and ⅃-pattern, indicating some of them have a potential to perceive dark and/or dark-light transition. Thirty-three ZmCCTs were co-expressed with 218 other maize genes; and 24 ZmCCTs were associated with known QTLs. The data presented in this study will help inform further functions of ZmCCTs.

12.
Front Microbiol ; 12: 723828, 2021.
Article in English | MEDLINE | ID: mdl-34367122

ABSTRACT

Fungi play an irreplaceable role in drug discovery in the course of human history, as they possess unique abilities to synthesize diverse specialized metabolites with significant medicinal potential. Trichoderma are well-studied filamentous fungi generally observed in nature, which are widely marketed as biocontrol agents. The secondary metabolites produced by Trichoderma have gained extensive attention since they possess attractive chemical structures with remarkable biological activities. A large number of metabolites have been isolated from Trichoderma species in recent years. A previous review by Reino et al. summarized 186 compounds isolated from Trichoderma as well as their biological activities up to 2008. To update the relevant list of reviews of secondary metabolites produced from Trichoderma sp., we provide a comprehensive overview in regard to the newly described metabolites of Trichoderma from the beginning of 2009 to the end of 2020, with emphasis on their chemistry and various bioactivities. A total of 203 compounds with considerable bioactivities are included in this review, which is worth expecting for the discovery of new drug leads and agrochemicals in the foreseeable future. Moreover, new strategies for discovering secondary metabolites of Trichoderma in recent years are also discussed herein.

13.
Front Microbiol ; 12: 727670, 2021.
Article in English | MEDLINE | ID: mdl-34434185

ABSTRACT

Marine-derived fungi are a treasure house for the discovery of structurally novel secondary metabolites with potential pharmaceutical value. In this study, a pair of new nor-bisabolane derivative enantiomers (±)-1 and two new phthalides (4 and 5), as well as four known metabolites, were isolated from the culture filtrate of the marine algal-derived endophytic fungus Penicillium chrysogenum LD-201810. Their structures were established by detailed interpretation of spectroscopic data (1D/2D NMR and ESI-MS). The optical resolution of compound (±)-1 by chiral HPLC successfully afforded individual enantiomers (+)-1 and (-)-1, and their absolute configurations were determined by TDDFT-ECD calculations. Compound (±)-1 represents the first example of bisabolane analogs with a methylsulfinyl substituent group, which is rare in natural products. All of the isolated compounds 1-7 were evaluated for their cytotoxic activity against A549, BT-549, HeLa, HepG2, MCF-7, and THP-1 cell lines, as well as for antifungal activity against four plant pathogenetic fungi (Alternaria solani, Botrytis cinerea, Fusarium oxysporum, and Valsa mali). Compound 2, a bisabolane-type sesquiterpenoid, was shown to possess excellent activity for control of B. cinerea with half-maximal inhibitory concentration (IC50) of 13.6 µg/mL, whereas the remaining investigated compounds showed either weak or no cytotoxic/antifungal activity in this study.

14.
Animals (Basel) ; 11(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924454

ABSTRACT

Chicken products and chickens with colibacillosis are often reported to be a suspected source of extraintestinal pathogenic Escherichia coli (ExPEC) causing several diseases in humans. Such pathogens in healthy chickens can also contaminate chicken carcasses at the slaughter and then are transmitted to humans via food supply; however, reports about the ExPEC in healthy chickens are still rare. In this study, we determined the prevalence and characteristics of ExPEC isolates in healthy chickens in China. A total of 926 E. coli isolates from seven layer farms (371 isolates), one white-feather broiler farm (78 isolates) and 17 live poultry markets (477 isolates from yellow-feather broilers) in 10 cities in China, were isolated and analyzed for antibiotic resistance phenotypes and genotypes. The molecular detection of ExPEC among these healthy chicken E. coli isolates was performed by PCRs, and the serogroups and antibiotic resistance characteristics of ExPEC were also analyzed. Pulsed-field gel electrophoresis (PFGE) and Multilocus sequence typing (MLST) were used to analyze the genetic relatedness of these ExPEC isolates. We found that the resistance rate for each of the 15 antimicrobials tested among E. coli from white-feather broilers was significantly higher than that from brown-egg layers and that from yellow-feather broilers in live poultry markets (p < 0.05). A total of 22 of the 926 E. coli isolates (2.4%) from healthy chickens were qualified as ExPEC, and the detection rate (7.7%, 6/78) of ExPEC among white-feather broilers was significantly higher than that (1.6%, 6/371) from brown-egg layers and that (2.1%, 10/477) from yellow-feather broilers (p < 0.05). PFGE and MLST analysis indicated that clonal dissemination of these ExPEC isolates was unlikely. Serogroup O78 was the most predominant type among the six serogroups identified in this study, and all the six serogroups had been frequently reported in human ExPEC isolates in many countries. All the 22 ExPEC isolates were multidrug-resistant (MDR) and the resistance rates to ampicillin (100%) and sulfamethoxazole-trimethoprim (100%) were the highest, followed by tetracycline (95.5%) and doxycycline (90.9%). blaCTX-M was found in 15 of the 22 ExPEC isolates including 10 harboring additional fosfomycin resistance gene fosA3. Notably, plasmid-borne colistin resistance gene mcr-1 was identified in six ExPEC isolates in this study. Worryingly, two ExPEC isolates were found to carry both mcr-1 and blaNDM, compromising both the efficacies of carbapenems and colistin. The presence of ExPEC isolates in healthy chickens, especially those carrying mcr-1 and/or blaNDM, is alarming and will pose a threat to the health of consumers. To our knowledge, this is the first report of mcr-1-positive ExPEC isolates harboring blaNDM from healthy chickens.

15.
Ying Yong Sheng Tai Xue Bao ; 31(10): 3273-3281, 2020 Oct.
Article in Chinese | MEDLINE | ID: mdl-33314815

ABSTRACT

To understand the damage capability of the invasive pest Spodoptera frugiperda on diffe-rent corn varieties in China, we evaluated survival fitness of S. frugiperda on three varieties of sweet corn (i.e., Suitian No.1, Zhengtian 68, and Huajintian No.1) and three varieties of waxy corn (i.e., Jingkenuo 2000, Guangheitiannuo, and Guangnuo No.1) by constructing life table for all populations. The correlation of biological parameters of S. frugiperda to the main nutrients and crude fiber content in corn leaves were analyzed. Results showed that the larva survival rate, pupal weight, and production of S. frugiperda on sweet corns were significantly higher than those on waxy corns. The intrinsic rate of increase (rm) of S. frugiperda on the sweet corns ranged from 0.1566 to 0.1843, and the net reproductive rate (R0) ranged from 187.97 to 353.35, being higher than those reared on the waxy corns (rm was from 0.0998 to 0.1465, and R0 was from 25.89 to 95.34). S. frugiperda reared on the sweet corns had higher population growth ability than those reared on the waxy corns. The content of main nutrients such as vitamin C, starch, soluble sugar, protein, fat, total amino acids, and crude fiber in the sweet corn leaves were higher than those in the waxy corn leaves. There were positive correlations between R0 of S. frugiperda to the contenst of vitamin C, starch, soluble sugar, protein, and crude fiber in corn leaves. The results indicated that S. frugiperda reared on the sweet corn leaves had higher survival fitness than those reared on the waxy corn leaves.


Subject(s)
Reproduction , Zea mays , Animals , China , Larva , Pupa , Spodoptera
16.
Parasite ; 27: 71, 2020.
Article in English | MEDLINE | ID: mdl-33306023

ABSTRACT

Parasite biodiversity of fish in coral reefs of the South China Sea is still incompletely explored. We describe here a new species of Neohexostoma (Monogenea: Hexostomatidae) from the gill filaments of the dogtooth tuna Gymnosarda unicolor (Scombridae), collected off Yongshu Reef, South China Sea. Neohexostoma gymnosardae n. sp. is distinguished from its congeners by the following features: (i) haptor clearly marked from body proper by a strongly constricted peduncle, divided in its posterior margin into two symmetrical lobes, (ii) vagina armed with scattered small blunt spines, (iii) eggs tied by their long polar filaments, (vi) esophagus with several lateral diverticula, (v) intestinal ceca unfused and extending into the haptor. We present an analysis of the relationships of this monogenean based on partial 28S rDNA sequences. An identification key for species of Neohexostoma is provided. This is the first member of the genus Neohexostoma known to parasitize a species of Gymnosarda.


TITLE: Neohexostoma gymnosardae n. sp. (Monogenea, Hexostomatidae), un parasite branchial de Gymnosarda unicolor (Valenciennes) (Teleostei, Scombridae) dans la mer de Chine méridionale. ABSTRACT: La biodiversité parasitaire des poissons dans les récifs coralliens de la mer de Chine méridionale est encore incomplètement explorée. Nous décrivons ici une nouvelle espèce de Neohexostoma (Monogenea, Hexostomatidae) des filaments branchiaux du thon à dents de chien Gymnosarda unicolor (Scombridae), collecté au large du récif de Yongshu, mer de Chine méridionale. Neohexostoma gymnosardae n. sp. se distingue de ses congénères par les caractéristiques suivantes : (i) hapteur clairement séparé du corps proprement dit par un pédoncule fortement resserré, divisé dans sa marge postérieure en deux lobes symétriques, (ii) vagin armé de petites épines émoussées éparses, (iii) œufs attachés par leurs longs filaments polaires, (vi) œsophage avec plusieurs diverticules latéraux, (v) caeca intestinaux non fusionnés et s'étendant dans le hapteur. Nous présentons une analyse des relations de ce monogène basée sur des séquences partielles d'ADNr 28S. Une clé d'identification des espèces de Neohexostoma est fournie. Ceci est le premier membre du genre Neohexostoma connu pour parasiter une espèce de Gymnosarda.


Subject(s)
Fish Diseases , Gills , Perciformes , Trematoda , Animals , China , Female , Fish Diseases/parasitology , Gills/parasitology , Oceans and Seas , Perciformes/parasitology , RNA, Ribosomal, 28S/genetics , Species Specificity , Trematoda/anatomy & histology , Trematoda/genetics
18.
Planta ; 252(1): 1, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32504137

ABSTRACT

MAIN CONCLUSION: Maize has a set of dark response genes, expression of which is influenced by multiple factor and varies with maize inbred lines but without germplasm specificity. The response to photoperiod is a common biological issue across the species kingdoms. Dark is as important as light in photoperiod. However, further in-depth understanding of responses of maize (Zea mays) to light and dark transition under photoperiod is hindered due to the lack of understanding of dark response genes. With multiple public "-omic" datasets of temperate and tropical/subtropical maize, 16 maize dark response genes, ZmDRGs, were found and had rhythmic expression under dark and light-dark cycle. ZmDRGs 6-8 were tandemly duplicated. ZmDRGs 2, 13, and 14 had a chromosomal collinearity with other maize genes. ZmDRGs 1-11 and 13-16 had copy-number variations. ZmDRGs 2, 9, and 16 showed 5'-end sequence deletion mutations. Some ZmDRGs had chromatin interactions and underwent DNA methylation and/or m6A mRNA methylation. Chromosomal histones associated with 15 ZmDRGs were methylated and acetylated. ZmDRGs 1, 2, 4, 9, and 13 involved photoperiodic phenotypes. ZmDRG16 was within flowering-related QTLs. ZmDRGs 1, 3, and 6-11 were present in cis-acting expression QTLs (eQTLs). ZmDRGs 1, 4, 6-9, 11, 12, and 14-16 showed co-expression with other maize genes. Some of ZmDRG-encoded ZmDRGs showed obvious differences in abundance and phosphorylation. CONCLUSION: Sixteen ZmDRGs 1-16 are associated with the dark response of maize. In the process of post-domestication and/or breeding, the ZmDRGs undergo the changes without germplasm specificity, including epigenetic modifications, gene copy numbers, chromatin interactions, and deletion mutations. In addition to effects by these factors, ZmDRG expression is influenced by promoter elements, cis-acting eQTLs, and co-expression networks.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins/metabolism , Quantitative Trait Loci/genetics , Zea mays/genetics , Circadian Rhythm , Photoperiod , Plant Proteins/genetics , Zea mays/physiology , Zea mays/radiation effects
19.
Parasite ; 27: 33, 2020.
Article in English | MEDLINE | ID: mdl-32410725

ABSTRACT

Paracaesicola n. gen., is erected herein to accommodate a new microcotylid species, Paracaesicola nanshaensis n. sp., collected from the Yongshu Reef, South China Sea. This species is the first monogenean to be recorded from the gills of Paracaesio sordida. The new species is characterized by the following features: (i) haptor short, with clamps arranged in two equal bilateral rows; (ii) testes numerous, arranged in two roughly alternating longitudinal rows, extending into the haptor; (iii) genital atrium armed with 16 robust spines, which are vertically arranged on top of the sausage shaped muscular male copulatory organ; and (iv) single vagina, bottle-shaped, with a distinctly bulbous vaginal atrium. The terminals of the reproductive system discriminate Paracaesicola n. gen. from all other genera in the Microcotylidae. Molecular phylogenetic analyses, based on partial 28S rDNA, places Paracaesicola nanshaensis n. sp. within the microcotylid clade, but its sequence differs from all known available microcotylid sequences.


TITLE: Paracaesicola nanshaensis n. gen., n. sp. (Monogenea, Microcotylidae), parasite branchial de Paracaesio sordida (Teleostei, Lutjanidae) de la mer de Chine méridionale. ABSTRACT: Paracaesicola n. gen. est érigé ici pour accueillir une nouvelle espèce de Microcotylidae, Paracaesicola nanshaensis n. sp., collectée sur le récif de Yongshu, mer de Chine méridionale. Cette espèce est le premier monogène signalé des branchies de Paracaesio sordida. La nouvelle espèce est caractérisée par : (i) hapteur court, avec des pinces disposées en deux rangées bilatérales égales ; (ii) testicules nombreux, disposés en deux rangées longitudinales à peu près alternées, s'étendant jusqu'au hapteur ; (iii) atrium génital armé de 16 épines robustes, disposées verticalement au-dessus de l'organe copulateur mâle, musculaire et en forme de saucisse ; et (iv) vagin unique, en forme de bouteille, avec un atrium vaginal nettement bulbeux. Les parties terminales du système reproducteur distinguent Paracaesicola n. gen. de tous les autres genres de Microcotylidae. Les analyses phylogénétiques moléculaires, basées sur l'ADNr 28S partiel, placent Paracaesicola nanshaensis n. sp. au sein du clade des Microcotylidae, mais sa séquence diffère de toutes les séquences de Microcotylidae disponibles.


Subject(s)
Fishes/parasitology , Gills/parasitology , Phylogeny , Trematoda/anatomy & histology , Trematoda/classification , Animals , China , Female , Fish Diseases/parasitology , Genitalia, Female/anatomy & histology , Genitalia, Male/anatomy & histology , Male , Oceans and Seas , Species Specificity , Trematoda/isolation & purification
20.
Mar Drugs ; 18(5)2020 May 22.
Article in English | MEDLINE | ID: mdl-32456085

ABSTRACT

A new pentaketide derivative, penilactonol A (1), and two new hydroxyphenylacetic acid derivatives, (2'R)-stachyline B (2) and (2'R)-westerdijkin A (3), together with five known metabolites, bisabolane-type sesquiterpenoids 4-6 and meroterpenoids 7 and 8, were isolated from the solid culture of a marine alga-associated fungus Penicillium chrysogenum LD-201810. Their structures were elucidated based on extensive spectroscopic analyses, including 1D/2D NMR and high resolution electrospray ionization mass spectra (HRESIMS). The absolute configurations of the stereogenic carbons in 1 were determined by the (Mo2(OAc)4)-induced circular dichroism (CD) and comparison of the calculated and experimental electronic circular dichroism (ECD) spectra, while the absolute configuration of the stereogenic carbon in 2 was established using single-crystal X-ray diffraction analysis. Compounds 2 and 3 adapt the 2'R-configuration as compared to known hydroxyphenylacetic acid-derived and O-prenylated natural products. The cytotoxicity of 1-8 against human carcinoma cell lines (A549, BT-549, HeLa, HepG2, MCF-7, and THP-1) was evaluated. Compound 3 exhibited cytotoxicity to the HepG2 cell line with an IC50 value of 22.0 µM. Furthermore, 5 showed considerable activities against A549 and THP-1 cell lines with IC50 values of 21.2 and 18.2 µM, respectively.


Subject(s)
Antineoplastic Agents/pharmacology , Eutrophication , Hep G2 Cells/drug effects , Penicillium chrysogenum , Animals , Antineoplastic Agents/chemistry , Humans , Inhibitory Concentration 50 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...