Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e30699, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38770343

ABSTRACT

Background: Neurofilaments are neuron specific skeleton proteins maintaining axon transduction speed, leaked into cerebrospinal fluid and serum after axonal injury or neuron death. Sleep duration change has long related to many health issues but lack laboratory examination. Methods: This study enrolled total 10,175 participants from 2013 to 2014 National Health and Nutrition Examination Survey and used a multi-variable linear model to analyze the relationship between sleep duration and serum neurofilament light chain (sNfL) level. Results: There was a fixed relationship between sleep duration and sNfL level (ß = 0.65, p = 0.0280). After adjusted for covariates, this relationship still (ß = 0.82, p = 0.0052). Segmented regression showed that the turning point of sleep duration was 7 h 1 h decrease in sleep duration was significantly associated with -1.26 higher sNfL level (95 % CI: 2.25, -0.28; p = 0.0115) when sleep duration <7 h; however, 1 h increase in sleep duration was significantly associated with 3.20 higher sNfL level (95 % CI: 2.13, 4.27; p < 0.0001) when sleep duration >7 h. Furthermore, the stratified analysis indicated that the associations between sleep duration and sNfL level were stronger among those normal body mass index and trouble sleeping (p-interaction <0.0001 and 0.0003). Conclusion: In summary, there was a J-shaped relationship between sleep duration and sNfL level in the United States of America representative group, these may suggest that extreme sleep duration can be deleterious judged by sNfL level. And still need large cohort study to determine the accurate relationship, and cluster analysis to infer the nervous disease connected with extreme sleep duration.

2.
Am J Surg ; 232: 45-53, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38383166

ABSTRACT

BACKGROUND: There is no consensus regarding safe intraoperative blood pressure thresholds that protect against postoperative acute kidney injury (AKI). This review aims to examine the existing literature to delineate safe intraoperative hypotension (IOH) parameters to prevent postoperative AKI. METHODS: PubMed, Cochrane Central, and Web of Science were systematically searched for articles published between 2015 and 2022 relating the effects of IOH on postoperative AKI. RESULTS: Our search yielded 19 articles. IOH risk thresholds ranged from <50 to <75 â€‹mmHg for mean arterial pressure (MAP) and from <70 to <100 â€‹mmHg for systolic blood pressure (SBP). MAP below 65 â€‹mmHg for over 5 â€‹min was the most cited threshold (N â€‹= â€‹13) consistently associated with increased postoperative AKI. Greater magnitude and duration of MAP and SBP below the thresholds were generally associated with a dose-dependent increase in postoperative AKI incidence. CONCLUSIONS: While a consistent definition for IOH remains elusive, the evidence suggests that MAP below 65 â€‹mmHg for over 5 â€‹min is strongly associated with postoperative AKI, with the risk increasing with the magnitude and duration of IOH.


Subject(s)
Acute Kidney Injury , Hypotension , Intraoperative Complications , Postoperative Complications , Humans , Acute Kidney Injury/etiology , Acute Kidney Injury/epidemiology , Acute Kidney Injury/prevention & control , Hypotension/etiology , Hypotension/epidemiology , Hypotension/prevention & control , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Postoperative Complications/etiology , Intraoperative Complications/prevention & control , Intraoperative Complications/epidemiology , Intraoperative Complications/etiology
3.
J Basic Microbiol ; 64(3): e2300365, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38012466

ABSTRACT

The chlamydospores of Duddingtonia flagrans are an essential survival and reproductive structure and also an effective ingredient for the biocontrol of parasitic nematodes in livestock. In this study, entering and exiting dormancy conditions and predatory activity of the fungal chlamydospores were conducted. During this fungal growth process, the cultivation time is negatively correlated with spore germination rates. After the spores were processed by vacuum drying for 168 h, their germination rate dropped to 0.94%. In contrast, the percentage of living spores remained 54.82%, suggesting that the spores entered structural dormancy in the arid environment. Meanwhile, the efficacies of the spore against Haemonchus contortus larvae were 93.05% (0 h), 92.19% (16 h), 92.77% (96 h), and 86.45% (168 h), respectively. After dormant spores were stored at 4°C, -20°C, and 28°C (RH90 ~ 95%) for 7 days, their germination rate began to increase significantly (p < 0.05). For in vitro predation assay under the condition of 28°C (RH90 ~ 95%), the predation rate was significantly higher on the 7th day after incubation than that on the 3rd day (p < 0.05). During the period when spores were stored at room temperature for 8 months, their germination rate decreased in the first 5 months and then increased slowly to reach a peak in the 7th month. However, the reduction rate of H. contortus L3 in feces captured by spores remained above 71% for the first 7 months. These results will help us increase the end products yield and the quality of biological control of parasitic nematodes in livestock.


Subject(s)
Ascomycota , Duddingtonia , Haemonchus , Animals , Predatory Behavior , Pest Control, Biological/methods , Haemonchus/microbiology , Feces/microbiology , Spores, Fungal , Larva/microbiology
4.
J Basic Microbiol ; 64(1): 32-41, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37699751

ABSTRACT

The morphological and structural differences of different types of chlamydospore of Arthrobotrys flagrans, a nematophagous fungus, were studied under light microscope and electron microscope to provide a reference for the biological control of parasitic nematodiasis. In this study, A. flagrans isolate F088 dormant chlamydospore and nondormant chlamydospore were selected as the research objects. The structural differences of these spores were observed by optical microscopy through lactol cotton blue, Trypan blue, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining. FunXite -1, 4',6-diamidino-2-phenylindole, and calcofluor white staining were used to observe the metabolic activity, cell wall, and nucleus differences of the two types of spores under fluorescence microscope. Ultrastructure of the two kinds of spores was observed using scanning electron microscope (SEM) and transmission electron microscope (TEM). Since lacto phenol cotton blue, trypan blue staining cannot distinguish dormant spores from dead spores, MTT assay was performed. Fluorescence microscopy observation showed that the cytoplasmic metabolic activity of nondormant spores was stronger than that of dormant spores. The nucleus of dormant spores was bright blue, and their fluorescence was stronger than that of nondormant spores. The cell wall of nondormant spores produced stronger yellow-green fluorescence than that of dormant spores. Ultrastructural observation showed that there were globular protuberances on the surface of the two types of spores but with no significant difference between them. The inner wall of dormant spore possesses a thick zona pellucida with high electron density which was significantly thicker than that of nondormant spores, and their cytoplasm is also changed. In this study, the microstructure characteristics of dormant and nondormant chlamydospores of A. flagrans fungi were preliminarily clarified, suggesting that the state of cell wall and intracellular materials were changed after spores entered to dormancy.


Subject(s)
Ascomycota , Trypan Blue , Spores, Fungal , Feces/microbiology , Pest Control, Biological
5.
Transl Vis Sci Technol ; 12(8): 5, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37555738

ABSTRACT

Purpose: Carboxymethylcellulose is an artificial tear ingredient known to decrease gut microbiome diversity when ingested. This study examines the effect of carboxymethylcellulose on ocular surface microbiome diversity and composition. Methods: Healthy adult participants without significant ophthalmic disease or concurrent carboxymethylcellulose artificial tear use were allocated randomly to take carboxymethylcellulose or control polyethylene glycol artificial tears for seven days. Conjunctival swabs were collected before and after artificial tear treatment. This trial is registered at clinicaltrials.gov (NCT05292755). Primary outcomes included abundance of bacterial taxa and microbiome diversity as measured by the Chao-1 richness estimate, Shannon's phylogenetic diversity index, and UniFrac analysis. Secondary outcomes included Ocular Surface Disease Index scores and artificial tear compliance. Results: Of the 80 enrolled participants, 66 completed the trial. Neither intervention affected Chao-1 richness (analysis of variance [ANOVA], P = 0.231) or Shannon's diversity index (ANOVA, P = 0.224). Microbiome samples did not separate by time point (permutation multivariate analysis of variance [PERMANOVA], P = 0.223) or intervention group (PERMANOVA, P = 0.668). LEfSe taxonomic analysis revealed that carboxymethylcellulose depleted several taxa including Bacteroides and Lachnoclostridium, but enriched Enterobacteriaceae, Citrobacter, and Gordonia. Both interventions decreased OSDI scores (Wilcoxon signed rank test, P < 0.05), but there was no significant difference between interventions (Mann-Whitney U, P = 0.54). Conclusions: Carboxymethylcellulose artificial tears increased Actinobacteriota but decreased Bacteroides and Firmicutes bacteria. Carboxymethylcellulose artificial tears do not affect ocular surface microbiome diversity and are not significantly more effective than polyethylene glycol artificial tears for dry eye treatment. Translational Relevance: The 16S microbiome analysis has revealed small changes in the ocular surface microbiome associated with artificial tear use.


Subject(s)
Lubricant Eye Drops , Microbiota , Adult , Humans , Carboxymethylcellulose Sodium , Phylogeny , Polyethylene Glycols
6.
Anim Biotechnol ; 34(8): 3708-3717, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37149785

ABSTRACT

Intramuscular fat (IMF) positively influences various aspects of meat quality, while the subcutaneous fat (SF) has negative effect on carcass characteristics and fattening efficiency. Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation, herein, through bioinformatic screen for the potential regulators of adipogenesis from two independent microarray datasets, we identified that PPARγ is a potentially regulator between porcine IMF and SF adipogenesis. Then we treated subcutaneous preadipocytes (SA) and intramuscular preadipocytes (IMA) of pig with RSG (1 µmol/L), and we found that RSG treatment promoted the differentiation of IMA via differentially activating PPARγ transcriptional activity. Besides, RSG treatment promoted apoptosis and lipolysis of SA. Meanwhile, by the treatment of conditioned medium, we excluded the possibility of indirect regulation of RSG from myocyte to adipocyte and proposed that AMPK may mediate the RSG-induced differential activation of PPARγ. Collectively, the RSG treatment promotes IMA adipogenesis, and advances SA lipolysis, this effect may be associated with AMPK-mediated PPARγ differential activation. Our data indicates that targeting PPARγ might be an effective strategy to promote intramuscular fat deposition while reduce subcutaneous fat mass of pig.


Subject(s)
Adipogenesis , PPAR gamma , Swine , Animals , Adipogenesis/physiology , Rosiglitazone/pharmacology , PPAR gamma/genetics , AMP-Activated Protein Kinases/pharmacology , Adipocytes/physiology , Cell Differentiation
7.
Turk J Med Sci ; 52(5): 1468-1477, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36422496

ABSTRACT

BACKGROUND: Hypoxia-induced pulmonary arterial hypertension (PAH) is characterized by prostacyclin (PGI2 ) disorder, which manifests in the same manner as in monocrotaline (MCT)-induced PAH. Endogenous PGI2 inhibitor coupling factor 6 (CF6) is involved in MCT-induced PAH. This study aimed to explore the presence or absence of a correlation between hypoxia-induced PAH and CF6. METHODS: This study was conducted between January 2019 and June 2020. A total of 135 male Wistar rats (aged 8 weeks and weighing 200-250 g) were randomly divided into five groups: (A) control, (B) 1 week of hypoxia, (C) 2 weeks of hypoxia, (D) 3 weeks of hypoxia, and (E) 4 weeks of hypoxia. CF6 expression in both lung tissue and blood samples from the lung vasculature and tail vein was measured by western blotting, immunohistochemistry, reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS: Hemodynamic and morphological changes in hypoxia-induced rats indicated PAH development. The results showed the presence of a correlation between the mRNA and protein levels of CF6 in lung tissue, activity of mitochondrial ATP synthase, and hypoxia time, and there was a significant increment in the group exposed to hypoxia for 4 weeks compared to the control group. The decrement expression of ATPase inhibitory factor 1 (IF 1) mRNA was consistent with the outcomes of ATP synthase activity in lung tissue in the 4 weeks of hypoxia group compared with the control group. However, the levels of CF6 and ATP synthase activity did not differ between blood samples from the lung vasculature and tail vein. DISCUSSION: : In hypoxia-induced PAH, CF6 showed downregulated expression in lung tissue, but not in pulmonary vasculature and circulation. Therefore, we speculated that CF6 and ATP synthase may play important roles in hypoxia-induced PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Rats , Male , Animals , Mitochondrial Proton-Translocating ATPases/adverse effects , Mitochondrial Proton-Translocating ATPases/metabolism , Rats, Wistar , Monocrotaline/adverse effects , Hypoxia/complications , Hypoxia/metabolism , RNA, Messenger , Adenosine Triphosphate/adverse effects
8.
Mol Metab ; 64: 101548, 2022 10.
Article in English | MEDLINE | ID: mdl-35863637

ABSTRACT

OBJECTIVE: Cyclin C (CCNC) is the most conserved subunit of the Mediator complex, which is an important transcription cofactor. Recently, we have found that CCNC facilitates brown adipogenesis in vitro by activating C/EBPα-dependent transcription. However, the role of CCNC in brown adipose tissue (BAT) in vivo remains unclear. METHODS: We generated conditional knock-out mice by crossing Ccncflox/flox mice with Myf5Cre, Ucp1Cre or AdipoqCre transgenic mice to investigate the role of CCNC in BAT development and function. We applied glucose and insulin tolerance test, cold exposure and indirect calorimetry to capture the physiological phenotypes and used immunostaining, immunoblotting, qRT-PCR, RNA-seq and cell culture to elucidate the underlying mechanisms. RESULTS: Here, we show that deletion of CCNC in Myf5+ progenitor cells caused BAT paucity, despite the fact that there was significant neonatal lethality. Mechanistically different from in vitro, CCNC deficiency impaired the proliferation of embryonic brown fat progenitor cells without affecting brown adipogenesis or cell death. Interestingly, CCNC deficiency robustly reduced age-dependent lipid accumulation in differentiated brown adipocytes in all three mouse models. Mechanistically, CCNC in brown adipocytes is required for lipogenic gene expression through the activation of the C/EBPα/GLUT4/ChREBP axis. Consistent with the importance of de novo lipogenesis under carbohydrate-rich diets, high-fat diet (HFD) feeding abolished CCNC deficiency -caused defects of lipid accumulation in BAT. Although insulin sensitivity and response to acute cold exposure were not affected, CCNC deficiency in Ucp1+ cells enhanced the browning of white adipose tissue (beiging) upon prolonged cold exposure. CONCLUSIONS: Together, these data indicate an important role of CCNC-Mediator in the regulation of BAT development and lipid accumulation in brown adipocytes.


Subject(s)
Adipocytes, Brown , Cyclin C , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Cyclin C/metabolism , Lipids , Mice , Mice, Knockout , Mice, Transgenic
9.
Int J Mol Med ; 41(3): 1627-1634, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29286060

ABSTRACT

Evodiamine is a botanical alkaloid compound extracted from Tetradium plants. Previous studies have reported that evodiamine (Evo) treatment can reduce food uptake and improve insulin resistance in animals . The skeletal muscle comprises about 40% of the body mass of adults and has a vital role in regulating whole body glucose metabolism and energy metabolism. However, the effect of Evo on skeletal muscle is unclear. The main aim of the present study was to investigate the effect of Evo on the differentiation and proliferation of the mouse C2C12 muscle cell line. The results demonstrated that Evo promoted the expression of myogenic marker genes (Myogenin and muscle myosin heavy chain) and increased myoblast differentiation, potentially via activation of the Wnt/ß­catenin pathway. Furthermore, Evo increased mRNA expression of p21, reduced mRNA expression of Cyclin B, Cyclin D and Cyclin E and reduced the percentage of proliferating cells. Also, phosphorylation of ERK1/2 was decreased by Evo treatment during cell proliferation. In conclusion, these findings indicated that Evo has marked effects on skeletal muscle development.


Subject(s)
Cell Differentiation/drug effects , Muscle Cells/cytology , Muscle Cells/metabolism , Quinazolines/pharmacology , Animals , Cell Line , Cell Proliferation/drug effects , Mice , Muscle Cells/drug effects , Muscle Development/drug effects , Muscle Proteins/genetics , Muscle Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Wnt Signaling Pathway/drug effects
10.
Int J Mol Sci ; 18(5)2017 May 08.
Article in English | MEDLINE | ID: mdl-28481288

ABSTRACT

It is well-documented that CL316,243 (a ß3 agonist) or rosiglitazone (a PPARγ agonist) can induce white adipocyte populations to brown-like adipocytes, thus increasing energy consumption and combating obesity. However, whether there is a combined effect remains unknown. In the present study, stromal vascular cells of inguinal white adipose tissue (iWAT-SVCs for short) from mice were cultured and induced into browning by CL316,243, rosiglitazone, or both. Results showed that a combination of CL316,243 and rosiglitazone significantly upregulated the expression of the core thermogenic gene Ucp1 as well as genes related with mitochondrial function (Cidea, Cox5b, Cox7a1, Cox8b, and Cycs), compared with the treatment of CL316,243 or rosiglitazone alone. Moreover, co-treatment with rosiglitazone could reverse the downregulation of Adiponectin resulting from CL316,243 stimuli alone. Taken together, a combination of rosiglitazone and CL316,243 can produce an additive effect of promoting thermogenic gene expression and an improvement of insulin sensitivity in mouse iWAT-SVCs.


Subject(s)
Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipogenesis , Hypoglycemic Agents/pharmacology , Mitochondria/metabolism , Adipocytes, Brown/cytology , Adipocytes, Brown/drug effects , Adipocytes, White/cytology , Adipocytes, White/drug effects , Adiponectin/genetics , Adiponectin/metabolism , Animals , Cells, Cultured , Dioxoles/pharmacology , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Rosiglitazone , Stromal Cells/cytology , Stromal Cells/drug effects , Stromal Cells/metabolism , Thiazolidinediones/pharmacology
11.
Biochem Cell Biol ; 93(1): 8-15, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25529604

ABSTRACT

MicroRNAs (miRNAs) are novel and potent regulators in myogenesis. However, the molecular mechanisms that many miRNAs regulate myoblast proliferation and differentiation which are largely unknown. Here, we found that miR-139-5p increased during C2C12 myoblast proliferation, while presenting an inverse trend during C2C12 myoblast differentiation. Flow cytometry and EdU incorporation assay showed that miR-139-5p slowed down the growth of C2C12 cells. Additional study demonstrated that ectopic introduction of miR-139-5p into C2C12 cells blocked myoblast differentiation. Importantly, we demonstrated for the first time that Wnt1, which is associated with the Wnt/ß-catenin signaling pathway, was a direct target of miR-139-5p. Moreover, we found that the expression level of Wnt1 was suppressed significantly (p < 0.01) by miR-139-5p, which triggered inhibition of Wnt/ß-catenin signaling through upregulation of glycogen synthase kinase 3 beta (GSK-3ß; p < 0.05) and downregulation of p-GSK-3ß (p < 0.01), ß-catenin (p < 0.05), and nuclear ß-catenin (p < 0.01). Taken together, these results suggest that miR-139-5p is an important negative regulator in myogenesis through blocking the Wnt1-mediated Wnt/ß-catenin signaling pathway.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , MicroRNAs/metabolism , Wnt Signaling Pathway , Wnt1 Protein/metabolism , beta Catenin/metabolism , Animals , Cell Differentiation/genetics , Cell Line , Cell Proliferation , Cells, Cultured , Down-Regulation , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , Mice , MicroRNAs/genetics , Muscle Development , Wnt1 Protein/genetics , beta Catenin/genetics
12.
J Cell Biochem ; 116(7): 1195-204, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25536154

ABSTRACT

MicroRNAs (miRNAs) participate in the regulation of adipogenesis. Identification of the full repertoire of miRNAs expressed in adipose tissue is likely to significantly improve our understanding of adipose tissue growth and development. Here, miR-139-5p was identified as an inhibitor of 3T3-L1 adipocyte differentiation with significantly down-regulating the expression levels of adipogenic marker genes PPAR γ (P < 0.01), aP2 (P < 0.01) and FAS (P < 0.01). Importantly, flow cytometry and EdU incorporation assay indicated that this inhibition was partly due to the dysfunction of clonal expansion. Furthermore, we firstly demonstrated that miR-139-5p blocked adipogenesis via directly targeted the 3' untranslated regions (UTRs) of Notch1 and IRS1 mRNAs, a key member of Notch signaling and IRS1/PI3K/Akt insulin signaling, respectively. In addition, the overexpression of Notch1 or IRS1 partially restored the suppressive effects miR-139-5p on differentiation of 3T3-L1 cells. To our knowledge, this was the first report that miR-139-5p functioned negatively by targeting Notch1 and IRS1 during 3T3-L1 adipogenesis, regulating the transition from clonal expansion to terminal differentiation.


Subject(s)
Adipogenesis , Insulin Receptor Substrate Proteins/genetics , MicroRNAs/metabolism , Receptors, Notch/genetics , 3T3 Cells , Animals , Down-Regulation , Mice , PPAR gamma/metabolism , Signal Transduction
13.
Mol Cell Biochem ; 395(1-2): 155-65, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24952481

ABSTRACT

MicroRNAs are a family of small, non-coding RNAs that regulate gene expression in a sequence-specific manner. Estrogen-related receptor α (ERRα) is an orphan nuclear receptor which plays an important role in adipocyte differentiation. Our previous Solexa sequencing results indicated a high expression of miR-125a in adult pig backfat. In this study, we predicated and experimentally validated ERRα as a target of miR-125a. To explore the role of miR-125a in porcine preadipocytes differentiation, miRNA agomir and antagomir were used to perform miR-125a overexpression or knockdown, respectively. Our results showed that overexpression of miR-125a could dramatically reduce the mRNA expression of adipogenic markers PPARγ, LPL, and aP2, as well as its target gene ERRα. Western blotting showed the protein level of aP2 and ERRα was also significantly down-regulated. The overexpression of miR-125a also led to a notable reduction in lipid accumulation which was detected by Oil Red O staining. In contrast, we observed promoted differentiation of porcine preadipocytes upon miR-125a inhibition. In conclusion, we verified miR-125a inhibits porcine preadipocytes differentiation through targeting ERRα for the first time, which may provide new insights in pork quality improvement and obesity control.


Subject(s)
Adipocytes/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Receptors, Estrogen/genetics , Sus scrofa/physiology , Adipocytes/cytology , Animals , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Gene Knockdown Techniques , Models, Biological , Receptors, Estrogen/metabolism , ERRalpha Estrogen-Related Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...