Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Front Pediatr ; 12: 1369823, 2024.
Article in English | MEDLINE | ID: mdl-38783921

ABSTRACT

Background and purpose: Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental disorders that is characterized by core features in social communication impairment and restricted, repetitive sensory-motor behaviors. This study aimed to further investigate the utilization of fecal microbiota transplantation (FMT) in children with ASD, both with and without gastrointestinal (GI) symptoms, evaluate the effect of FMT and analyze the alterations in bacterial and fungal composition within the gut microbiota. Methods: A total of 38 children diagnosed with ASD participated in the study and underwent oral lyophilized FMT treatment. The dosage of the FMT treatment was determined based on a ratio of 1 g of donor stool per 1 kg of recipient body weight, with a frequency of once every 4 weeks for a total of 12 weeks. In addition, 30 healthy controls (HC) were included in the analysis. The clinical efficacy of FMT was evaluated, while the composition of fecal bacteria and fungi was determined using 16S rRNA and ITS gene sequencing methods. Results: Median age of the 38 children with ASD was 7 years. Among these children, 84.2% (32 of 38) were boys and 81.6% (31 of 38) exhibited GI symptoms, with indigestion, constipation and diarrhea being the most common symptoms. Sample collections and assessments were conducted at baseline (week 0), post-treatment (week 12) and follow-up (week 20). At the end of the follow-up phase after FMT treatment, the autism behavior checklist (ABC) scores decreased by 23% from baseline, and there was a 10% reduction in scores on the childhood autism rating scale (CARS), a 6% reduction in scores on the social responsiveness scale (SRS) and a 10% reduction in scores on the sleep disturbance scale for children (SDSC). In addition, short-term adverse events observed included vomiting and fever in 2 participants, which were self-limiting and resolved within 24 h, and no long-term adverse events were observed. Although there was no significant difference in alpha and beta diversity in children with ASD before and after FMT therapy, the FMT treatment resulted in alterations in the relative abundances of various bacterial and fungal genera in the samples of ASD patients. Comparisons between children with ASD and healthy controls (HC) revealed statistically significant differences in microbial abundance before and after FMT. Blautia, Sellimonas, Saccharomycopsis and Cystobasidium were more abundant in children with ASD than in HC, while Dorea were less abundant. After FMT treatment, levels of Blautia, Sellimonas, Saccharomycopsis and Cystobasidium decreased, while levels of Dorea increased. Moreover, the increased abundances of Fusicatenibacter, Erysipelotrichaceae_UCG-003, Saccharomyces, Rhodotorula, Cutaneotrichosporon and Zygosaccharomyces were negatively correlated with the scores of ASD core symptoms. Conclusions: Oral lyophilized FMT could improve GI and ASD related symptoms, as well as sleep disturbances, and alter the gut bacterial and fungal microbiota composition in children with ASD. Clinical Trial Registration: Chinese Clinical Trial Registry, ChiCTR2200055943. Registered 28 January 2022, www.chictr.org.cn.

2.
BMC Med ; 22(1): 148, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561738

ABSTRACT

BACKGROUND: Indobufen is widely used in patients with aspirin intolerance in East Asia. The OPTION trial launched by our cardiac center examined the performance of indobufen based dual antiplatelet therapy (DAPT) after percutaneous coronary intervention (PCI). However, the vast majority of patients with acute coronary syndrome (ACS) and aspirin intolerance were excluded. We aimed to explore this question in a real-world population. METHODS: Patients enrolled in the ASPIRATION registry were grouped according to the DAPT strategy that they received after PCI. The primary endpoints were major adverse cardiovascular and cerebrovascular events (MACCE) and Bleeding Academic Research Consortium (BARC) type 2, 3, or 5 bleeding. Propensity score matching (PSM) was adopted for confounder adjustment. RESULTS: A total of 7135 patients were reviewed. After one-year follow-up, the indobufen group was associated with the same risk of MACCE versus the aspirin group after PSM (6.5% vs. 6.5%, hazard ratio [HR] = 0.99, 95% confidence interval [CI] = 0.65 to 1.52, P = 0.978). However, BARC type 2, 3, or 5 bleeding was significantly reduced (3.0% vs. 11.9%, HR = 0.24, 95% CI = 0.15 to 0.40, P < 0.001). These results were generally consistent across different subgroups including aspirin intolerance, except that indobufen appeared to increase the risk of MACCE in patients with ACS. CONCLUSIONS: Indobufen shared the same risk of MACCE but a lower risk of bleeding after PCI versus aspirin from a real-world perspective. Due to the observational nature of the current analysis, future studies are still warranted to further evaluate the efficacy of indobufen based DAPT, especially in patients with ACS. TRIAL REGISTRATION: Chinese Clinical Trial Register ( https://www.chictr.org.cn ); Number: ChiCTR2300067274.


Subject(s)
Acute Coronary Syndrome , Isoindoles , Percutaneous Coronary Intervention , Phenylbutyrates , Humans , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/surgery , Aspirin/adverse effects , Drug Therapy, Combination , Hemorrhage/chemically induced , Hemorrhage/epidemiology , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Platelet Aggregation Inhibitors/adverse effects , Registries , Treatment Outcome
3.
Clin Epigenetics ; 16(1): 56, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643219

ABSTRACT

BACKGROUND: Cervical cancer remains a leading cause of death, particularly in developing countries. WHO screening guidelines recommend human papilloma virus (HPV) detection as a means to identify women at risk of developing cervical cancer. While HPV testing identifies those at risk, it does not specifically distinguish individuals with neoplasia. We investigated whether a quantitative molecular test that measures methylated DNA markers could identify high-risk lesions in the cervix with accuracy. RESULTS: Marker discovery was performed in TCGA-CESC Infinium Methylation 450 K Array database and verified in three other public datasets. The panel was technically validated using Quantitative Multiplex-Methylation-Specific PCR in tissue sections (N = 252) and cervical smears (N = 244) from the USA, South Africa, and Vietnam. The gene panel consisted of FMN2, EDNRB, ZNF671, TBXT, and MOS. Cervical tissue samples from all three countries showed highly significant differential methylation in squamous cell carcinoma (SCC) with a sensitivity of 100% [95% CI 74.12-100.00], and specificity of 91% [95% CI 62.26-99.53] to 96% [95% CI 79.01-99.78], and receiver operating characteristic area under the curve (ROC AUC) = 1.000 [95% CI 1.00-1.00] compared to benign cervical tissue, and cervical intraepithelial neoplasia 2/3 with sensitivity of 55% [95% CI 37.77-70.84] to 89% [95% CI 67.20-98.03], specificity of 93% [95% CI 84.07-97.38] to 96% [95% CI 79.01-99.78], and a ROC AUC ranging from 0.793 [95% CI 0.68-0.89] to 0.99 [95% CI 0.97-1.00] compared to CIN1. In cervical smears, the marker panel detected SCC with a sensitivity of 87% [95% CI 77.45-92.69], specificity 95% [95% CI 88.64-98.18], and ROC AUC = 0.925 [95% CI 0.878-0.974] compared to normal, and high-grade squamous intraepithelial lesion (HSIL) at a sensitivity of 70% (95% CI 58.11-80.44), specificity of 94% (95% CI 88.30-97.40), and ROC AUC = 0.884 (95% CI 0.822-0.945) compared to low-grade intraepithelial lesion (LSIL)/normal in an analysis of pooled data from the three countries. Similar to HPV-positive, HPV-negative cervical carcinomas were frequently hypermethylated for these markers. CONCLUSIONS: This 5-marker panel detected SCC and HSIL in cervical smears with a high level of sensitivity and specificity. Molecular tests with the ability to rapidly detect high-risk HSIL will lead to timely treatment for those in need and prevent unnecessary procedures in women with low-risk lesions throughout the world. Validation of these markers in prospectively collected cervical smear cells followed by the development of a hypermethylated marker-based cervical cancer detection test is warranted.


Subject(s)
Carcinoma, Squamous Cell , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Developing Countries , Papillomavirus Infections/diagnosis , Papillomavirus Infections/genetics , Genetic Markers , DNA Methylation , Carcinoma, Squamous Cell/genetics , Papillomaviridae/genetics , Vaginal Smears/methods , Tumor Suppressor Proteins/genetics
4.
ACS Synth Biol ; 13(2): 658-668, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38319655

ABSTRACT

The use of Paenibacillus polymyxa as an industrial producer is limited by the lack of suitable synthetic biology tools. In this study, we identified a native sucrose operon in P. polymyxa. Its structural and functional relationship analysis revealed the presence of multiple regulatory elements, including four ScrR-binding sites and a catabolite-responsive element (CRE). In P. polymyxa, we established a cascade T7 expression system involving an integrated T7 RNA polymerase (T7P) regulated by the sucrose operon and a T7 promoter. It enables controllable gene expression by sucrose and regulatory elements, and a 5-fold increase in expression efficiency compared with the original sucrose operon was achieved. Further deletion of SacB in P. polymyxa resulted in a 38.95% increase in the level of thermophilic lipase (TrLip) production using the cascade T7 induction system. The results highlight the effectiveness of sucrose regulation as a novel synthetic biology tool, which facilitates exploring gene circuits and enables their dynamic regulation.


Subject(s)
Paenibacillus polymyxa , Paenibacillus polymyxa/genetics , Paenibacillus polymyxa/metabolism , Sucrose/metabolism , Promoter Regions, Genetic/genetics , Operon/genetics
5.
Int J Biol Macromol ; 254(Pt 1): 127730, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287588

ABSTRACT

In this study, we examined the effect of Schizophyllum commune fermentation broth (SCFB) rich in polysaccharides (SCFP) on the stability and bioaccessibility of ß-carotene and curcumin. An SCFB-stabilized oil-in-water (o/w) emulsion (SCFBe) was prepared using SCFB as the continuous phase, and then evaluated for storage stability using an SCFP-based emulsion (SCFPe) as the control. The findings revealed that SCFBe is more stable at 60 °C than SCFPe, and stratification or droplet size varied at differing pH levels (3-9) and concentrations of Na+ (0.1-0.5 M) and Ca2+ (0.01-0.05 M). Since the absolute value of the zeta potential of SCFBe is much lower at 60 °C than that at 4 °C and 25 °C, a higher temperature (60 °C) may enhance the reactivity of polysaccharides and proteins in SCFB to improve the stability of SCFBe. Both the protective impact of SCFB on functional food molecules and their capacity to block lipid oxidation increased as polysaccharide content improved. The bioaccessibility of ß-carotene after in vitro simulated gastrointestinal digestion is 11.18 %-12.28 %, whereas that of curcumin is 31.64 %-33.00 %. By fermenting edible and medicinal fungi in liquid, we created a unique and environmentally friendly approach for getting food-grade emulsifiers without extraction.


Subject(s)
Curcumin , Schizophyllum , Emulsions/chemistry , beta Carotene/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Schizophyllum/metabolism , Fermentation , Polysaccharides/chemistry
6.
Microorganisms ; 12(1)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38257987

ABSTRACT

Washing machines are one of the tools that bring great convenience to people's daily lives. However, washing machines that have been used for a long time often develop issues such as odor and mold, which can pose health hazards to consumers. There exists a conspicuous gap in our understanding of the microorganisms that inhabit the inner workings of washing machines. In this study, samples were collected from 22 washing machines in Shanghai, China, including both water eluted from different parts of washing machines and biofilms. Quantitative qualitative analysis was performed using fluorescence PCR quantification, and microbial communities were characterized by high-throughput sequencing (HTS). This showed that the microbial communities in all samples were predominantly composed of bacteria. HTS results showed that in the eluted water samples, the bacteria mainly included Pseudomonas, Enhydrobacter, Brevibacterium, and Acinetobacter. Conversely, in the biofilm samples, Enhydrobacter and Brevibacterium were the predominant bacterial microorganisms. Correlation analysis results revealed that microbial colonies in washing machines were significantly correlated with years of use and the type of detergent used to clean the washing machine. As numerous pathogenic microorganisms can be observed in the results, effective preventive measures and future research are essential to mitigate these health problems and ensure the continued safe use of these household appliances.

7.
Basic Res Cardiol ; 119(1): 113-131, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38168863

ABSTRACT

Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining. Endothelial calcium homeostasis, CRT-IP3Rs-MCU signaling expression, and apoptosis were assessed by real-time calcium signal reporter GCaMP8, western blotting, and fluorescence staining. Drug affinity-responsive target stability (DARTS) assay was adopted to detect proteins that directly bind to pinacidil. The present study found pinacidil treatment improved capillary density and perfusion, reduced no-reflow and infraction areas, and improved cardiac function and hemodynamics after I/R injury. These benefits were attributed to the ability of pinacidil to alleviate calcium overload and mitochondria-dependent apoptosis in cardiac microvascular endothelial cells (CMECs). Moreover, the DARTS assay showed that pinacidil directly binds to HSP90, through which it inhibits chaperone-mediated autophagy (CMA) degradation of CRT. CRT overexpression inhibited IP3Rs and MCU expression, reduced mitochondrial calcium inflow and mitochondrial injury, and suppressed endothelial apoptosis. Importantly, endothelial-specific overexpression of CRT shared similar benefits with pinacidil on cardiovascular protection against I/R injury. In conclusion, our data indicate that pinacidil attenuated microvascular I/R injury potentially through improving CRT degradation and endothelial calcium overload.


Subject(s)
Chaperone-Mediated Autophagy , Reperfusion Injury , Humans , Pinacidil/metabolism , Endothelial Cells/metabolism , Calreticulin/metabolism , Calcium/metabolism , Reperfusion Injury/metabolism , Apoptosis
8.
Pharmacol Res ; 200: 107057, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218357

ABSTRACT

Mitochondria-associated ferroptosis exacerbates cardiac microvascular dysfunction in diabetic cardiomyopathy (DCM). Nicorandil, an ATP-sensitive K+ channel opener, protects against endothelial dysfunction, mitochondrial dysfunction, and DCM; however, its effects on ferroptosis and mitophagy remain unexplored. The present study aimed to assess the beneficial effects of nicorandil against endothelial ferroptosis in DCM and the underlying mechanisms. Cardiac microvascular perfusion was assessed using a lectin perfusion assay, while mitophagy was assessed via mt-Keima transfection and transmission electron microscopy. Ferroptosis was examined using mRNA sequencing, fluorescence staining, and western blotting. The mitochondrial localization of Parkin, ACSL4, and AMPK was determined via immunofluorescence staining. Following long-term diabetes, nicorandil treatment improved cardiac function and remodeling by alleviating cardiac microvascular injuries, as evidenced by the improved microvascular perfusion and structural integrity. mRNA-sequencing and biochemical analyses showed that ferroptosis occurred and Pink1/Parkin-dependent mitophagy was suppressed in cardiac microvascular endothelial cells after diabetes. Nicorandil treatment suppressed mitochondria-associated ferroptosis by promoting the Pink1/Parkin-dependent mitophagy. Moreover, nicorandil treatment increased the phosphorylation level of AMPKα1 and promoted its mitochondrial translocation, which further inhibited the mitochondrial translocation of ACSL4 via mitophagy and ultimately suppressed mitochondria-associated ferroptosis. Importantly, overexpression of mitochondria-localized AMPKα1 (mitoAα1) shared similar benefits with nicorandil on mitophagy, ferroptosis and cardiovascular protection against diabetic injury. In conclusion, the present study demonstrated the therapeutic effects of nicorandil against cardiac microvascular ferroptosis in DCM and revealed that the mitochondria-localized AMPK-Parkin-ACSL4 signaling pathway mediates mitochondria-associated ferroptosis and the development of cardiac microvascular dysfunction.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Ferroptosis , Humans , Diabetic Cardiomyopathies/genetics , AMP-Activated Protein Kinases/metabolism , Nicorandil/pharmacology , Nicorandil/therapeutic use , Nicorandil/metabolism , Endothelial Cells/metabolism , Mitochondria/metabolism , Signal Transduction , Myocytes, Cardiac/metabolism , Ubiquitin-Protein Ligases/metabolism , RNA, Messenger/metabolism , Diabetes Mellitus/metabolism
9.
J Agric Food Chem ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37927088

ABSTRACT

Bacillus licheniformis plays a crucial role as a microbial host in the food industry and shows promising potential as a probiotic for human intestinal regulation. It exhibits a remarkable ability to utilize lactose as its sole carbon source. Despite its significance, the lactose-related metabolic pathway in this strain remains unclear. In this study, we identified a novel lactose-specific operon (lacDCAB) in B. licheniformis, consisting of the lacD gene that encodes a unique 6-phospho-ß-galactosidase belonging to the GH4 family, and the lacCAB genes encoding a lactose-specific PTS1 system. Notably, we constructed and assessed an array library of transport and catabolic modules specifically for lactose utilization. Among these modules, PDS-lacD-P2-pts1 demonstrated the highest specific lactose consumption rate of 0.64 g/(L·h·OD), which was 8 times higher than that of the control strain. Furthermore, we developed a dual carbon source transport model based on the PDS-lacD-P2-pts1 assembly module, which highlighted efficient coutilization of glucose/sucrose, lactose/sucrose, lactose/galactose, and lactose/2,3-butanediol. This study provides insight into the lactose-specific metabolic pathway of B. licheniformis and presents a promising strategy for enhancing lactose utilization efficiency and mixed carbon source coutilization.

10.
Nucleic Acids Res ; 51(21): 11952-11966, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37850640

ABSTRACT

Synthetic regulation of metabolic fluxes has emerged as a common strategy to improve the performance of microbial cell factories. The present regulatory toolboxes predominantly rely on the control and manipulation of carbon pathways. Nitrogen is an essential nutrient that plays a vital role in growth and metabolism. However, the availability of broadly applicable tools based on nitrogen pathways for metabolic regulation remains limited. In this work, we present a novel regulatory system that harnesses signals associated with nitrogen metabolism to redirect excess carbon flux in Bacillus licheniformis. By engineering the native transcription factor GlnR and incorporating a sorbitol-responsive element, we achieved a remarkable 99% inhibition of the expression of the green fluorescent protein reporter gene. Leveraging this system, we identified the optimal redirection point for the overflow carbon flux, resulting in a substantial 79.5% reduction in acetoin accumulation and a 2.6-fold increase in acetate production. This work highlight the significance of nitrogen metabolism in synthetic biology and its valuable contribution to metabolic engineering. Furthermore, our work paves the way for multidimensional metabolic regulation in future synthetic biology endeavors.


Subject(s)
Bacillus licheniformis , Metabolic Engineering , Sorbitol , Bacillus licheniformis/genetics , Bacillus licheniformis/metabolism , Carbon/metabolism , Metabolic Engineering/methods , Nitrogen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Sorbitol/metabolism
11.
Mol Cell Proteomics ; 22(12): 100667, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852321

ABSTRACT

Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two primary etiologies of end-stage heart failure. However, there remains a dearth of comprehensive understanding the global perspective and the dynamics of the proteome and phosphoproteome in ICM and DCM, which hinders the profound comprehension of pivotal biological characteristics as well as differences in signal transduction activation mechanisms between these two major types of heart failure. We conducted high-throughput quantification proteomics and phosphoproteomics analysis of clinical heart tissues with ICM or DCM, which provided us the system-wide molecular insights into pathogenesis of clinical heart failure in both ICM and DCM. Both protein and phosphorylation expression levels exhibit distinct separation between heart failure and normal control heart tissues, highlighting the prominent characteristics of ICM and DCM. By integrating with omics results, Western blots, phosphosite-specific mutation, chemical intervention, and immunofluorescence validation, we found a significant activation of the PRKACA-GSK3ß signaling pathway in ICM. This signaling pathway influenced remolding of the microtubule network and regulated the critical actin filaments in cardiac construction. Additionally, DCM exhibited significantly elevated mitochondria energy supply injury compared to ICM, which induced the ROCK1-vimentin signaling pathway activation and promoted mitophagy. Our study not only delineated the major distinguishing features between ICM and DCM but also revealed the crucial discrepancy in the mechanisms between ICM and DCM. This study facilitates a more profound comprehension of pathophysiologic heterogeneity between ICM and DCM and provides a novel perspective to assist in the discovery of potential therapeutic targets for different types of heart failure.


Subject(s)
Cardiomyopathy, Dilated , Heart Failure , Myocardial Ischemia , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Proteomics , Mitophagy , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Heart Failure/metabolism , Heart Failure/pathology , Cytoskeleton/metabolism , Microtubules/metabolism , rho-Associated Kinases
12.
Ann Med ; 55(2): 2265381, 2023.
Article in English | MEDLINE | ID: mdl-37824254

ABSTRACT

BACKGROUND: As folates are essential for embryonic development and growth, it is necessary to accurately determine the levels of folates in plasma and red blood cells (RBCs) for clinical intervention. The aims of this study were to develop and validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantitation of folates in plasma and RBCs and to examine the association between plasma and RBC folate concentrations and gestational diabetes mellitus (GDM), gestational hypertension (GH) and preeclampsia (PE). METHODS: With the in-house developed LC-MS/MS, a retrospective cross-sectional study was conducted. The healthy pregnant women of first- (n = 147), second- (n = 84) and third-trimester (n = 141) or the women diagnosed with GDM (n = 84), GH (n = 58) or PE (n = 23), that were aged between 22 and 46 years old and registered at our institute, were subjected for measurement of folic acid (FA) and 5-methyltetrahydrofolate (5-MTHF), followed by appropriate statistical association analysis. RESULTS: The assay for simultaneous quantitation of FA and 5-MTHF in plasma and RBCs was linear, stable, with imprecision less than 15% and recoveries within ±10%. The lower limits of quantification for FA and 5-MTHF measurement in whole blood were 0.57 and 1.09 nmol/L, and in plasma were 0.5 and 1 nmol/L, respectively. In the association analysis, the patients with lower RBC folate level (<906 nmol/L) presented higher risks of PE development (OR 4.861 [95% CI 1.411-16.505]) by logistic regression and restricted cubic spline (RCS) regression in a nonlinear fashion. In addition, higher level of plasma folates in pregnancy was significantly associated with GH risk but may be protective for the development of GDM. CONCLUSIONS: The in-house developed LC-MS/MS method for folates and metabolites in plasma or RBC showed satisfactory analytical performance for clinical application. Further, the levels of folates and metabolites were diversely associated with GDM, GH and PE development.


Subject(s)
Pre-Eclampsia , Tandem Mass Spectrometry , Female , Humans , Pregnancy , Young Adult , Adult , Middle Aged , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Retrospective Studies , Cross-Sectional Studies , Folic Acid/analysis , Erythrocytes/chemistry
13.
Synth Syst Biotechnol ; 8(4): 565-577, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37691767

ABSTRACT

Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks. These crucial bioactive functions rely on their ability to respond to effectors and concurrently interact with binding sites. Recent advancements have brought innovative insights into the understanding of transcription factors. In this review, we comprehensively summarize the mechanisms by which transcription factors carry out their functions, along with calculation and experimental-based methods employed in their identification. Additionally, we highlight recent achievements in the application of transcription factors in various biotechnological fields, including cell engineering, human health, and biomanufacturing. Finally, the current limitations of research and provide prospects for future investigations are discussed. This review will provide enlightening theoretical guidance for transcription factors engineering.

14.
Microorganisms ; 11(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37764147

ABSTRACT

Catabolite control protein A (CcpA) is a critical regulator in Gram-positive bacteria that orchestrates carbon metabolism by coordinating the utilization of different carbon sources. Although it has been widely proved that CcpA helps prioritize the utilization of glucose over other carbon sources, this global regulator's precise mechanism of action remains unclear. In this study, a mutant Bacillus licheniformis deleted for CcpA was constructed. Cell growth, carbon utilization, metabolites and the transcription of key enzymes of the mutant strain were compared with that of the wild-type one. It was found that CcpA is involved in the regulation of glucose concentration metabolism in Bacillus. At the same time, CcpA regulates glucose metabolism by inhibiting acetic acid synthesis and pentose phosphate pathway key gene zwF. The conversion rate of acetic acid is increased by about 3.5 times after ccpA is deleted. The present study provides a new mechanism of carbon metabolism and acetic acid balance regulated by CcpA. On the one hand, this work deepens the understanding of the regulatory function of CcpA and provides a new view on the regulation of glucose metabolism. On the other hand, it is helpful to the transformation of B. licheniformis chassis microorganisms.

15.
AMB Express ; 13(1): 89, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37633871

ABSTRACT

Bacillus licheniformis and its related strains have found extensive applications in diverse industries, agriculture, and medicine. However, the current breeding methods for this strain primarily rely on natural screening and traditional mutagenesis. The limited availability of efficient genetic engineering tools, particularly recombination techniques, has hindered further advancements in its applications. In this study, we conducted a comprehensive investigation to identify and characterize a recombinase, RecT, derived from a Bacillus phage. Remarkably, the recombinase exhibited a 105-fold enhancement in the recombination efficiency of the strain. To facilitate genome editing, we developed a system based on the conditional expression of RecT using a rhamnose-inducible promoter (Prha). The efficacy of this system was evaluated by deleting the amyL gene, which encodes an α-amylase. Our findings revealed that the induction time and concentration of rhamnose, along with the generation time of the strain, significantly influenced the editing efficiency. Optimal conditions for genome editing were determined as follows: the wild-type strain was initially transformed with the genome editing plasmid, followed by cultivation and induction with 1.5% rhamnose for 8 h. Subsequently, the strain was further cultured for an additional 24 h, equivalent to approximately three generations. Consequently, the recombination efficiency reached an impressive 16.67%. This study represents a significant advancement in enhancing the recombination efficiency of B. licheniformis through the utilization of a RecT-based recombination system. Moreover, it provides a highly effective genome editing tool for genetic engineering applications in this strain.

16.
Int J Biol Macromol ; 249: 125975, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37494993

ABSTRACT

As one of the most abundant biopolymers, lignin is a widely available resource. However, its potential largely remains untapped, with most of it ending up as waste from industries like paper production, pulp processing, and bio-refining. The research undertaken in this study focused on the extraction of lignin from agroforestry waste using a deep eutectic solvent (DES) as a carrier for α-amylase immobilization, resulting in high stability and reusability. Several techniques, including Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and the Brunauer-Emmett-Teller (BET) method were employed to examine the structure and morphology of both the extracted lignin and the immobilized enzyme. The temperature used to recover lignin by DES would affect immobilization efficiency and enzyme loading by influencing its specific surface area, pore size, and volume distribution. Investigations using Nuclear Overhauser Effect Spectroscopy (NOESY) uncovered that the hydroxyl groups in G, H, and S units and the ß-O-4 structure of lignin primarily serve as binding sites for enzyme molecules. Immobilized α-amylase demonstrated a higher pH and thermal stability level, with an optimal pH of 7.0 and temperature of 100 °C, compared to the free enzyme, which exhibited optimal activity at a pH of 6.5 and temperature of 90 °C. Importantly, immobilized α-amylase retained >80 % of its initial activity even after 28 days at room temperature, and it maintained 70 % of its activity after being reused 12 times. These findings strongly suggest that lignin derived from agroforestry residues holds promising potential as a future versatile immobilization material, a prospect integral to society's sustainable development.


Subject(s)
Nanoparticles , alpha-Amylases , Enzyme Stability , alpha-Amylases/chemistry , Lignin/chemistry , Deep Eutectic Solvents , Water , Hydrogen-Ion Concentration , Enzymes, Immobilized/chemistry , Temperature
17.
J Agric Food Chem ; 71(25): 9804-9814, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37311098

ABSTRACT

Optimization of supply and conversion efficiency of geranylgeranyl diphosphate (GGPP) is important for enhancing geranylgeraniol (GGOH) production in Saccharomyces cerevisiae. In this study, first, a strain producing 26.92 ± 1.59 mg/g of dry cell weight squalene was constructed with overexpression of all genes of the mevalonate (MVA) pathway, and an engineered strain producing 597.12 mg/L GGOH at the shake flask level was obtained. Second, through additional expression of PaGGPPs-ERG20 and PaGGPPs-DPP1, and downregulating expression of ERG9, the GGOH titer was increased to 1221.96 mg/L. Then, a NADH HMG-CoA reductase from Silicibacter pomeroyi (SpHMGR) was introduced to alleviate the high dependence of the strain upon NADPH, and the GGOH production was further increased to 1271.14 mg/L. Finally, the GGOH titer reached 6.33 g/L after optimizing the fed-batch fermentation method in a 5 L bioreactor, with a 24.9% improvement from the previous report. This study might accelerate the process of developing S. cerevisiae cell factories for diterpenoid and tetraterpenoid production.


Subject(s)
Diterpenes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Metabolic Engineering/methods , Diterpenes/metabolism , Saccharomyces cerevisiae Proteins/metabolism
18.
Int J Biol Macromol ; 242(Pt 2): 124992, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37211077

ABSTRACT

In this study, a laccase-like gene from Thermomicrobium roseum DSM 5159 (TrLac-like) (NCBI: WP_012642205.1) was recombinantly expressed in Bacillus subtilis WB600. The optimum temperature and pH for TrLac-like were 50 °C and 6.0, respectively. TrLac-like showed high tolerance to mixed systems of water and organic solvents, indicating its potential for large-scale application in various industries. It showed 36.81 % similarity with YlmD from Geobacillus stearothermophilus (PDB:6T1B) in sequence alignment; therefore, 6T1B was employed as the template for homology modeling. To improve catalytic efficiency, amino acid substitutions within 5 Å of the inosine ligand were simulated to reduce the binding energy and promote substrate affinity. Single and double substitutions (44 and 18, respectively) were prepared, and the catalytic efficiency of the mutant A248D was increased to approximately 110-fold that of the wild type, while the thermal stability was maintained. Bioinformatics analysis revealed that the significant improvement in catalytic efficiency could be attributed to the formation of new hydrogen bonds between the enzyme and substrate. With a further decrease in the binding energy, the catalytic efficiency of the multiple mutant H129N/A248D was approximately 14-fold higher than that of the wild type but lower than that of the single mutant A248D. This is possibly because kcat also decreased with the decrease of Km; consequently, the substrate could not be released in time owing to the enzyme with the combination mutation not being able to release the substrate at a high rate.


Subject(s)
Chloroflexi , Laccase , Laccase/genetics , Laccase/metabolism , Temperature , Amino Acid Substitution , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics
19.
Synth Syst Biotechnol ; 8(2): 281-291, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37090063

ABSTRACT

Bacillus licheniformis is one of the most characteristic Gram-positive bacteria. Its unique genetic background and safety characteristics make it have important biologic applications in the food industry, including, the biosynthesis of high value-added bioproducts, probiotic functions, biological treatment of wastes derived from food production, etc. In this review, these recent advances are summarized and presented systematically for the first time. In addition, we highlight synthetic biology strategies as a potential driver of developing this strain for wider and more efficient application in the food industry. Finally, we present the current challenges faced and provide our unique perspective on relevant future research directions. In summary, this review will provide an illuminating and comprehensive perspective that will allow an in-depth understanding of B. licheniformis and promote its more effective development in the food industry.

20.
Acta Physiol (Oxf) ; 238(3): e13975, 2023 07.
Article in English | MEDLINE | ID: mdl-37042471

ABSTRACT

AIM: To explore the beneficial effects of L-carnitine on cardiac microvascular dysfunction in diabetic cardiomyopathy from the perspectives of mitophagy and mitochondrial integrity. METHODS: Male db/db and db/m mice were randomly assigned to groups and were treated with L-carnitine or a solvent for 24 weeks. Endothelium-specific PARL overexpression was attained via adeno-associated virus serotype 9 (AAV9) transfection. Adenovirus (ADV) vectors overexpressing wild-type CPT1a, mutant CPT1a, or PARL were transfected into endothelial cells exposed to high glucose and free fatty acid (HG/FFA) injury. Cardiac microvascular function, mitophagy, and mitochondrial function were analyzed by immunofluorescence and transmission electron microscopy. Protein expression and interactions were assessed by western blotting and immunoprecipitation. RESULTS: L-carnitine treatment enhanced microvascular perfusion, reinforced endothelial barrier function, repressed the endothelial inflammatory response, and maintained the microvascular structure in db/db mice. Further results demonstrated that PINK1-Parkin-dependent mitophagy was suppressed in endothelial cells suffering from diabetic injury, and these effects were largely alleviated by L-carnitine through the inhibition of PARL detachment from PHB2. Moreover, CPT1a modulated the PHB2-PARL interaction by directly binding to PHB2. The increase in CPT1a activity induced by L-carnitine or amino acid mutation (M593S) enhanced the PHB2-PARL interaction, thereby improving mitophagy and mitochondrial function. In contrast, PARL overexpression inhibited mitophagy and abolished all the beneficial effects of L-carnitine on mitochondrial integrity and cardiac microvascular function. CONCLUSION: L-carnitine treatment enhanced PINK1-Parkin-dependent mitophagy by maintaining the PHB2-PARL interaction via CPT1a, thereby reversing mitochondrial dysfunction and cardiac microvascular injury in diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Mice , Male , Animals , Mitophagy , Endothelial Cells/metabolism , Diabetic Cardiomyopathies/drug therapy , Carnitine/pharmacology , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Kinases/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...