Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Heliyon ; 10(10): e30941, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38779031

ABSTRACT

Prostate adenocarcinoma (PRAD), driven by both genetic and epigenetic factors, is a common malignancy that affects men worldwide. We aimed to identify and characterize differentially expressed epigenetic-related genes (ERGs) in PRAD and investigate their potential roles in disease progression and prognosis. We used PRAD samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) to identify prognosis-associated ERGs. Thirteen ERGs with two distinct expression profiles were identified through consensus clustering. Gene set variation analysis highlighted differences in pathway activities, particularly in the Hedgehog and Notch pathways. Higher epigenetic scores correlated with favorable prognosis and improved immunotherapeutic response. Experimental validation underscored the importance of CBX3 and KAT2A, suggesting their pivotal roles in PRAD. This study provides crucial insights into the epigenetic scoring approach and presents a promising prognostic tool, with CBX3 and KAT2A as key players. These findings pave the way for targeted and personalized interventions for the treatment of PRAD.

2.
Cell Commun Signal ; 22(1): 257, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711089

ABSTRACT

Benign prostatic hyperplasia (BPH) is a multifactorial disease in which abnormal growth factor activation and embryonic reawakening are considered important factors. Here we demonstrated that the aberrant activation of transforming growth factor ß (TGF-ß)/Rho kinase 1 (ROCK1) increased the stemness of BPH tissue by recruiting mesenchymal stem cells (MSCs), indicating the important role of embryonic reawakening in BPH. When TGF-ß/ROCK1 is abnormally activated, MSCs are recruited and differentiate into fibroblasts/myofibroblasts, leading to prostate stromal hyperplasia. Further research showed that inhibition of ROCK1 activation suppressed MSC migration and their potential for stromal differentiation. Collectively, our findings suggest that abnormal activation of TGF-ß/ROCK1 regulates stem cell lineage specificity, and the small molecule inhibitor GSK269962A could target ROCK1 and may be a potential treatment for BPH.


Subject(s)
Mesenchymal Stem Cells , Prostatic Hyperplasia , Transforming Growth Factor beta , rho-Associated Kinases , rho-Associated Kinases/metabolism , Male , Prostatic Hyperplasia/pathology , Prostatic Hyperplasia/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation , Prostate/pathology , Prostate/metabolism , Cell Movement , Mice , Stromal Cells/metabolism , Stromal Cells/pathology
3.
J Nanobiotechnology ; 22(1): 208, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664789

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS: Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS: Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Osteocytes , Osteogenesis , Tropomyosin , Animals , Male , Mice , Adipogenesis , Cell Differentiation , Cells, Cultured , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Mice, Transgenic , Osteoclasts/metabolism , Osteocytes/metabolism , Osteoporosis/metabolism , Tropomyosin/metabolism , Tropomyosin/genetics
4.
Front Immunol ; 15: 1346878, 2024.
Article in English | MEDLINE | ID: mdl-38590522

ABSTRACT

Herpesviruses, prevalent DNA viruses with a double-stranded structure, establish enduring infections and play a part in various diseases. Despite their deployment of multiple tactics to evade the immune system, both localized and systemic inflammatory responses are triggered by the innate immune system's recognition of them. Recent progress has offered more profound understandings of the mechanisms behind the activation of the innate immune system by herpesviruses, specifically through inflammatory signaling. This process encompasses the initiation of an intracellular nucleoprotein complex, the inflammasome associated with inflammation.Following activation, proinflammatory cytokines such as IL-1ß and IL-18 are released by the inflammasome, concurrently instigating a programmed pathway for cell death. Despite the structural resemblances between herpesviruses, the distinctive methods of inflammatory activation and the ensuing outcomes in diseases linked to the virus exhibit variations.The objective of this review is to emphasize both the similarities and differences in the mechanisms of inflammatory activation among herpesviruses, elucidating their significance in diseases resulting from these viral infections.Additionally, it identifies areas requiring further research to comprehensively grasp the impact of this crucial innate immune signaling pathway on the pathogenesis of these prevalent viruses.


Subject(s)
Herpesviridae Infections , Virus Diseases , Humans , Inflammasomes/metabolism , Caspase 1/metabolism , Signal Transduction
5.
Nat Commun ; 15(1): 2562, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519485

ABSTRACT

Hydrogen spillover widely occurs in a variety of hydrogen-involved chemical and physical processes. Recently, metal-organic frameworks have been extensively explored for their integration with noble metals toward various hydrogen-related applications, however, the hydrogen spillover in metal/MOF composite structures remains largely elusive given the challenges of collecting direct evidence due to system complexity. Here we show an elaborate strategy of modular signal amplification to decouple the behavior of hydrogen spillover in each functional regime, enabling spectroscopic visualization for interfacial dynamic processes. Remarkably, we successfully depict a full picture for dynamic replenishment of surface hydrogen atoms under interfacial hydrogen spillover by quick-scanning extended X-ray absorption fine structure, in situ surface-enhanced Raman spectroscopy and ab initio molecular dynamics calculation. With interfacial hydrogen spillover, Pd/ZIF-8 catalyst shows unique alkyne semihydrogenation activity and selectivity for alkynes molecules. The methodology demonstrated in this study also provides a basis for further exploration of interfacial species migration.

6.
Microbes Infect ; 26(4): 105331, 2024.
Article in English | MEDLINE | ID: mdl-38537769

ABSTRACT

Bats are important mammal reservoirs of zoonotic pathogens. However, due to research limitations involving species, locations, pathogens, or sample types, the full diversity of viruses in bats remains to be discovered. We used next-generation sequencing technology to characterize the mammalian virome and analyze the phylogenetic evolution and diversity of mammalian viruses carried by bats from Haikou City and Tunchang County in Hainan Province, China. We collected 200 pharyngeal swab and anal swab samples from Rhinolophus affinis, combining them into nine pools based on the sample type and collection location. We subjected the samples to next-generation sequencing and conducted bioinformatics analysis. All samples were screened via specific PCR and phylogenetic analysis. The diverse viral reads, closely related to mammals, were assigned into 17 viral families. We discovered many novel bat viruses and identified some closely related to known human/animal pathogens. In the current study, 6 complete genomes and 2 partial genomic sequences of 6 viral families and 8 viral genera have been amplified, among which 5 strains are suggested to be new virus species. These included coronavirus, pestivirus, bastrovirus, bocavirus, papillomavirus, parvovirus, and paramyxovirus. The primary finding is that a SADS-related CoV and a HoBi-like pestivirus identified in R. affinis in Hainan Province could be pathogenic to livestock. This study expands our understanding of bats as a virus reservoir, providing a basis for further research on the transmission of viruses from bats to humans.


Subject(s)
Chiroptera , Genome, Viral , High-Throughput Nucleotide Sequencing , Phylogeny , Virome , Viruses , Chiroptera/virology , Animals , China/epidemiology , Virome/genetics , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Computational Biology/methods
7.
Adv Sci (Weinh) ; : e2310309, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477411

ABSTRACT

The recent discovery of copper-mediated and mitochondrion-dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell death for cancer therapy. Here the design of a core-shell nanoparticle, CuP/Er, for the co-delivery of copper (Cu) and erastin (Er) to cancer cells for synergistic cuproptosis and ferroptosis is reported. The anti-Warburg effect of Er sensitizes tumor cells to Cu-mediated cuproptosis, leading to irreparable mitochondrial damage by depleting glutathione and enhancing lipid peroxidation. CuP/Er induces strong immunogenic cell death, enhances antigen presentation, and upregulates programmed death-ligand 1 expression. Consequently, CuP/Er promotes proliferation and infiltration of T cells, and when combined with immune checkpoint blockade, effectively reinvigorates T cells to mediate the regression of murine colon adenocarcinoma and triple-negative breast cancer and prevent tumor metastasis. This study suggests a unique opportunity to synergize cuproptosis and ferroptosis with combination therapy nanoparticles to elicit strong antitumor effects and potentiate current cancer immunotherapies.

8.
Virulence ; 15(1): 2313410, 2024 12.
Article in English | MEDLINE | ID: mdl-38378443

ABSTRACT

Benign prostatic hyperplasia (BPH) is a prevalent disease among middle-aged and elderly males, but its pathogenesis remains unclear. Dysbiosis of the microbiome is increasingly recognized as a significant factor in various human diseases. Prostate tissue also contains a unique microbiome, and its dysbiosis has been proposed to contribute to prostate diseases. Here, we obtained prostate tissues and preoperative catheterized urine from 24 BPH individuals, and 8 normal prostate samples as controls, which followed strict aseptic measures. Using metagenomic next-generation sequencing (mNGS), we found the disparities in the microbiome composition between normal and BPH tissues, with Pseudomonas significantly enriched in BPH tissues, as confirmed by fluorescence in situ hybridization (FISH). Additionally, we showed that the prostate microbiome differed from the urine microbiome. In vitro experiments revealed that lipopolysaccharide (LPS) of Pseudomonas activated NF-κB signalling, leading to inflammation, proliferation, and EMT processes, while inhibiting apoptosis in prostatic cells. Overall, our research determines the presence of microbiome dysbiosis in BPH, and suggests that Pseudomonas, as the dominant microflora, may promote the progression of BPH through LPS activation of NF-κB signalling.


Subject(s)
Microbiota , Prostatic Hyperplasia , Male , Middle Aged , Aged , Humans , Prostatic Hyperplasia/pathology , NF-kappa B/genetics , Pseudomonas , Dysbiosis , In Situ Hybridization, Fluorescence , Lipopolysaccharides
9.
ACS Nano ; 18(6): 5152-5166, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38286035

ABSTRACT

Blockade of programmed cell death-1/programmed cell death-ligand 1 (PD-L1) immune checkpoints with monoclonal antibodies has shown great promise for cancer treatment, but these antibodies can cause immune-related adverse events in normal organs. Here we report a dual-cell targeted chemo-immunotherapeutic nanoscale coordination polymer (NCP), OxPt/BP, comprising oxaliplatin (OxPt) and 2-bromopalmitic acid (BP), for effective downregulation of PD-L1 expression in both cancer cells and dendritic cells (DCs) by inhibiting palmitoyl acyltransferase DHHC3. OxPt/BP efficiently promotes DC maturation by increasing intracellular oxidative stress and enhancing OxPt-induced immunostimulatory immunogenic cancer cell death. Systemic administration of OxPt/BP reduces the growth of subcutaneous and orthotopic colorectal carcinoma by facilitating the infiltration and activation of cytotoxic T lymphocytes together with reducing the population of immunosuppressive regulatory T cells. As a result, OxPt/BP significantly extends mouse survival without causing side effects. This work highlights the potential of NCPs in simultaneously reprogramming cancer cells and DCs for potent cancer treatment.


Subject(s)
B7-H1 Antigen , Neoplasms , Animals , Mice , Ligands , Neoplasms/drug therapy , Immunotherapy , Adaptive Immunity , Apoptosis , Dendritic Cells , Cell Line, Tumor
10.
Microbiol Res ; 281: 127596, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38215640

ABSTRACT

The research of the human microbiome in the preceding decade has yielded novel perspectives on human health and diseases. Benign prostatic hyperplasia (BPH) is a common disease in middle-aged and elderly males, which negatively affects the life quality. Existing evidence has indicated that the human microbiome, including urinary, intra-prostate, gut, oral and blood microbiome may exert a significant impact on the natural progression of BPH. The dysbiosis of the microbiome may induce inflammation at either a local or systemic level, thereby affecting the BPH. Moreover, metabolic syndrome (MetS) caused by the microbiome can also be involved in the development of BPH. Additionally, alterations in the microbiome composition during the senility process may serve as another cause of the BPH. Here, we summarize the influence of human microbiome on BPH and explore how the microbiome is linked to BPH through inflammation, MetS, and senility. In addition, we propose promising areas of investigation and discuss the implications for advancing therapeutic approaches.


Subject(s)
Metabolic Syndrome , Microbiota , Prostatic Hyperplasia , Male , Aged , Middle Aged , Humans , Prostatic Hyperplasia/etiology , Prostatic Hyperplasia/metabolism , Inflammation , Metabolic Syndrome/complications
11.
Microbes Infect ; 26(1-2): 105218, 2024.
Article in English | MEDLINE | ID: mdl-37714509

ABSTRACT

Ticks act as vectors and hosts of numerous arboviruses. Examples of medically important arboviruses include the tick-borne encephalitis virus, Crimean Congo hemorrhagic fever, and severe fever with thrombocytopenia syndrome. Recently, some novel arboviruses have been identified in blood specimens of patients with unexplained fever and a history of tick bites in Inner Mongolia. Consequently, tick-borne viruses are a major focus of infectious disease research. However, the spectrum of tick-borne viruses in subtropical areas of China has yet to be sufficiently characterized. In this study, we collected 855 ticks from canine and bovine hosts in four locations in Hainan Province. The ticks were combined into 18 pools according to genus and location. Viral RNA-sequence libraries were subjected to transcriptome sequencing analysis. Molecular clues from metagenomic analyses were used to classify sequence reads into virus species, genera, or families. The diverse viral reads closely associated with mammals were assigned to 12 viral families and important tick-borne viruses, such as Jingmen, Beiji nairovirus, and Colorado tick fever. Our virome and phylogenetic analyses of the arbovirus strains provide basic data for preventing and controlling human infectious diseases caused by tick-borne viruses in the subtropical areas of China.


Subject(s)
Arboviruses , Tick-Borne Diseases , Ticks , Animals , Humans , Cattle , Dogs , Arboviruses/genetics , Phylogeny , RNA, Viral/genetics , Genomics , China , Mammals
12.
FASEB J ; 38(1): e23369, 2024 01.
Article in English | MEDLINE | ID: mdl-38100642

ABSTRACT

The human cardiovascular system has evolved to accommodate the gravity of Earth. Microgravity during spaceflight has been shown to induce vascular remodeling, leading to a decline in vascular function. The underlying mechanisms are not yet fully understood. Our previous study demonstrated that miR-214 plays a critical role in angiotensin II-induced vascular remodeling by reducing the levels of Smad7 and increasing the phosphorylation of Smad3. However, its role in vascular remodeling evoked by microgravity is not yet known. This study aimed to determine the contribution of miR-214 to the regulation of microgravity-induced vascular remodeling. The results of our study revealed that miR-214 expression was increased in the forebody arteries of both mice and monkeys after simulated microgravity treatment. In vitro, rotation-simulated microgravity-induced VSMC migration, hypertrophy, fibrosis, and inflammation were repressed by miR-214 knockout (KO) in VSMCs. Additionally, miR-214 KO increased the level of Smad7 and decreased the phosphorylation of Smad3, leading to a decrease in downstream gene expression. Furthermore, miR-214 cKO protected against simulated microgravity induced the decline in aorta function and the increase in stiffness. Histological analysis showed that miR-214 cKO inhibited the increases in vascular medial thickness that occurred after simulated microgravity treatment. Altogether, these results demonstrate that miR-214 has potential as a therapeutic target for the treatment of vascular remodeling caused by simulated microgravity.


Subject(s)
MicroRNAs , Weightlessness , Humans , Mice , Animals , Muscle, Smooth, Vascular/metabolism , MicroRNAs/metabolism , Vascular Remodeling/genetics , Aorta/metabolism , Myocytes, Smooth Muscle/metabolism
13.
Nat Commun ; 14(1): 8461, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123537

ABSTRACT

Endothelial cells (ECs) and bone marrow stromal cells (BMSCs) play crucial roles in supporting hematopoiesis and hematopoietic regeneration. However, whether ECs are a source of BMSCs remains unclear. Here, we evaluate the contribution of endothelial-to-mesenchymal transition to BMSC generation in postnatal mice. Single-cell RNA sequencing identifies ECs expressing BMSC markers Prrx1 and Lepr; however, this could not be validated using Prrx1-Cre and Lepr-Cre transgenic mice. Additionally, only a minority of BMSCs are marked by EC lineage tracing models using Cdh5-rtTA-tetO-Cre or Tek-CreERT2. Moreover, Cdh5+ BMSCs and Tek+ BMSCs show distinct spatial distributions and characteristic mesenchymal markers, suggestive of their origination from different progenitors rather than CDH5+ TEK+ ECs. Furthermore, myeloablation induced by 5-fluorouracil treatment does not increase Cdh5+ BMSCs. Our findings indicate that ECs hardly convert to BMSCs during homeostasis and myeloablation-induced hematopoietic regeneration, highlighting the importance of using appropriate genetic models and conducting careful data interpretation in studies concerning endothelial-to-mesenchymal transition.


Subject(s)
Endothelial Cells , Mesenchymal Stem Cells , Mice , Animals , Bone Marrow , Mice, Transgenic
14.
World J Urol ; 41(12): 3629-3634, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831157

ABSTRACT

PURPOSE: To determine the difference in the burden of benign prostatic hyperplasia (BPH) between China and the United States from 1990 to 2019. METHODS: The prevalence, incidence, Years Lived with Disability (YLD), and their age-standardized rates for BPH in China and USA from 1990 to 2019 were based on the Global Burden of Disease Study 2019 (GBD 2019). The annual percentage changes (APC) of the age-standardized incidence rate (ASIR) and the age-standardized YLD rates (ASYR) were calculated using joinpoint regression analysis. The YLD numbers of six urinary tract diseases were also compared in both countries. RESULTS: The absolute burden of BPH increased continuously in both countries, but it was much higher in China than in the United States. The ASIR and ASYR of BPH decreased in China but remained stable or decreased slightly in the United States. BPH incidence and YLD rates decreased in all age groups in China from 1990 to 2019. In the USA, they varied by age group. BPH caused more YLD number than any other urinary tract disease in China. In the USA, prostate cancer (PCa) caused more YLDs than BPH. CONCLUSIONS: This research reveals marked BPH burden differences between China and the US (1990-2019). China's higher burden necessitates targeted interventions, while unique trends in both countries demand tailored strategies. These insights enhance understanding of BPH dynamics, informing effective interventions across diverse contexts.


Subject(s)
Global Burden of Disease , Prostatic Hyperplasia , Male , Humans , United States/epidemiology , Prostatic Hyperplasia/epidemiology , Incidence , Prevalence , China/epidemiology , Quality-Adjusted Life Years
15.
Bone Res ; 11(1): 53, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872163

ABSTRACT

Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoblast function play critical roles in bone formation, which is a highly regulated process. Long noncoding RNAs (lncRNAs) perform diverse functions in a variety of biological processes, including BMSC osteogenic differentiation. Although several studies have reported that HOX transcript antisense RNA (HOTAIR) is involved in BMSC osteogenic differentiation, its effect on bone formation in vivo remains unclear. Here, by constructing transgenic mice with BMSC (Prx1-HOTAIR)- and osteoblast (Bglap-HOTAIR)-specific overexpression of HOTAIR, we found that Prx1-HOTAIR and Bglap-HOTAIR transgenic mice show different bone phenotypes in vivo. Specifically, Prx1-HOTAIR mice showed delayed bone formation, while Bglap-HOTAIR mice showed increased bone formation. HOTAIR inhibits BMSC osteogenic differentiation but promotes osteoblast function in vitro. Furthermore, we identified that HOTAIR is mainly located in the nucleus of BMSCs and in the cytoplasm of osteoblasts. HOTAIR displays a nucleocytoplasmic translocation pattern during BMSC osteogenic differentiation. We first identified that the RNA-binding protein human antigen R (HuR) is responsible for HOTAIR nucleocytoplasmic translocation. HOTAIR is essential for osteoblast function, and cytoplasmic HOTAIR binds to miR-214 and acts as a ceRNA to increase Atf4 protein levels and osteoblast function. Bglap-HOTAIR mice, but not Prx1-HOTAIR mice, showed alleviation of bone loss induced by unloading. This study reveals the importance of temporal and spatial regulation of HOTAIR in BMSC osteogenic differentiation and bone formation, which provides new insights into precise regulation as a target for bone loss.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Animals , Humans , Mice , Bone and Bones/metabolism , Cell Differentiation/genetics , Mice, Transgenic , MicroRNAs/genetics , Osteogenesis/genetics , RNA, Long Noncoding/genetics
16.
Virol Sin ; 38(5): 651-662, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572844

ABSTRACT

The risk of emerging infectious diseases (EID) is increasing globally. More than 60% of EIDs worldwide are caused by animal-borne pathogens. This study aimed to characterize the virome, analyze the phylogenetic evolution, and determine the diversity of rodent-borne viruses in Hainan Province, China. We collected 682 anal and throat samples from rodents, combined them into 28 pools according to their species and location, and processed them for next-generation sequencing and bioinformatics analysis. The diverse viral contigs closely related to mammals were assigned to 22 viral families. Molecular clues of the important rodent-borne viruses were further identified by polymerase chain reaction for phylogenetic analysis and annotation of genetic characteristics such as arenavirus, coronavirus, astrovirus, pestivirus, parvovirus, and papillomavirus. We identified pestivirus and bocavirus in Leopoldoms edwardsi from Huangjinjiaoling, and bocavirus in Rattus andamanensis from the national nature reserves of Bangxi with low amino acid identity to known pathogens are proposed as the novel species, and their rodent hosts have not been previously reported to carry these viruses. These results expand our knowledge of viral classification and host range and suggest that there are highly diverse, undiscovered viruses that have evolved independently in their unique wildlife hosts in inaccessible areas.


Subject(s)
Parvoviridae Infections , RNA Viruses , Viruses , Humans , Animals , Rats , Rodentia , Phylogeny , Viruses/genetics , RNA Viruses/genetics , China
17.
Front Microbiol ; 14: 1165839, 2023.
Article in English | MEDLINE | ID: mdl-37564289

ABSTRACT

Introduction: Papillomaviruses (PVs) can cause hyperplasia in the skin and mucous membranes of humans, mammals, and non-mammalian animals, and are a significant risk factor for cervical and genital cancers. Methods: Using next-generation sequencing (NGS), we identified two novel strains of papillomavirus, PV-HMU-1 and PV-HMU-2, in swabs taken from belugas (Delphinapterus leucas) at Polar Ocean Parks in Qingdao and Dalian. Results: We amplified the complete genomes of both strains and screened ten belugas and one false killer whale (Pseudorca crassidens) for the late gene (L1) to determine the infection rate. In Qingdao, 50% of the two sampled belugas were infected with PV-HMU-1, while the false killer whale was negative. In Dalian, 71% of the eight sampled belugas were infected with PV-HMU-2. In their L1 genes, PV-HMU-1 and PV-HMU-2 showed 64.99 and 68.12% amino acid identity, respectively, with other members of Papillomaviridae. Phylogenetic analysis of combinatorial amino acid sequences revealed that PV-HMU-1 and PV-HMU-2 clustered with other known dolphin PVs but formed distinct branches. PVs carried by belugas were proposed as novel species under Firstpapillomavirinae. Conclusion: The discovery of these two novel PVs enhances our understanding of the genetic diversity of papillomaviruses and their impact on the beluga population.

18.
Chem Sci ; 14(19): 5106-5115, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37206384

ABSTRACT

We report the self-assembly of amphiphilic BDQ photosensitizers into lysosome-targeting nanophotosensitizer BDQ-NP for highly effective photodynamic therapy (PDT). Molecular dynamics simulation, live cell imaging, and subcellular colocalization studies showed that BDQ strongly incorporated into lysosome lipid bilayers to cause continuous lysosomal membrane permeabilization. Upon light irradiation, the BDQ-NP generated a high level of reactive oxygen species to disrupt lysosomal and mitochondrial functions, leading to exceptionally high cytotoxicity. The intravenously injected BDQ-NP accumulated in tumours to achieve excellent PDT efficacy on subcutaneous colorectal and orthotopic breast tumor models without causing systemic toxicity. BDQ-NP-mediated PDT also prevented metastasis of breast tumors to the lungs. This work shows that self-assembled nanoparticles from amphiphilic and organelle-specific photosensitizers provide an excellent strategy to enhance PDT.

19.
Commun Biol ; 6(1): 407, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055517

ABSTRACT

Mechanical force loading is essential for maintaining bone homeostasis, and unloading exposure can lead to bone loss. Osteoclasts are the only bone resorbing cells and play a crucial role in bone remodeling. The molecular mechanisms underlying mechanical stimulation-induced changes in osteoclast function remain to be fully elucidated. Our previous research found Ca2+-activated Cl- channel Anoctamin 1 (Ano1) was an essential regulator for osteoclast function. Here, we report that Ano1 mediates osteoclast responses to mechanical stimulation. In vitro, osteoclast activities are obviously affected by mechanical stress, which is accompanied by the changes of Ano1 levels, intracellular Cl- concentration and Ca2+ downstream signaling. Ano1 knockout or calcium binding mutants blunts the response of osteoclast to mechanical stimulation. In vivo, Ano1 knockout in osteoclast blunts loading induced osteoclast inhibition and unloading induced bone loss and. These results demonstrate that Ano1 plays an important role in mechanical stimulation induced osteoclast activity changes.


Subject(s)
Chloride Channels , Osteoclasts , Anoctamin-1/genetics , Anoctamin-1/metabolism , Chloride Channels/genetics , Osteoclasts/metabolism , Signal Transduction/physiology
20.
Food Chem ; 415: 135790, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-36868067

ABSTRACT

Persistent organic pollutants (POPs) are widely distributed in the environment and are toxic, even at low concentrations. In this study, we first used hydrogen-bonded organic framework (HOF) to enrich POPs, based on solid phase microextraction (SPME). The HOF called PFC-1 (self-assembled by 1,3,6,8-tetra(4-carboxylphenyl)pyrene) has an ultra-high specific surface area, excellent thermochemical stability, and abundant functional groups, making it potential to be an excellent coating in SPME. And the as-prepared PFC-1 fiber have demonstrated outstanding enrichment abilities for nitroaromatic compounds (NACs) and POPs. Furthermore, the PFC-1 fiber was coupled with gas chromatography-mass spectrometry (GC-MS) to develop an ultrasensitive and practical analytical method with wide linearity (0.2-200 ng·L-1), low detection limits for organochlorine pesticides (OCPs) (0.070-0.082 ng·L-1) and polychlorinated biphenyls (PCBs) (0.030-0.084 ng·L-1), good repeatability (6.7-9.9%), and satisfactory reproducibility (4.1-8.2%). Trace concentrations of OCPs and PCBs in drinking water, tea beverage, and tea were also determined precisely with the proposed analytical method.


Subject(s)
Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Water Pollutants, Chemical , Solid Phase Microextraction/methods , Polychlorinated Biphenyls/analysis , Persistent Organic Pollutants , Reproducibility of Results , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Environmental Pollutants/analysis , Beverages/analysis , Tea , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...