Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
J Nanobiotechnology ; 22(1): 353, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902759

ABSTRACT

Chemotherapy and immunotherapy have shown no significant outcome for unresectable pancreatic ductal adenocarcinoma (PDAC). Multi-drug combination therapy has become a consensus in clinical trials to explore how to arouse anti-tumor immunity and meanwhile overcome the poorly tumoricidal effect and the stroma barrier that greatly hinders drug penetration. To address this challenge, a comprehensive strategy is proposed to fully utilize both the ferroptotic vulnerability of PDAC to potently irritate anti-tumor immunity and the desmoplasia-associated focal adhesion kinase (FAK) to wholly improve the immunosuppressive microenvironment via sustained release of drugs in an injectable hydrogel for increasing drug penetration in tumor location and averting systematic toxicity. The injectable hydrogel ED-M@CS/MC is hybridized with micelles loaded with erastin that exclusively induces ferroptosis and a FAK inhibitor defactinib for inhibiting stroma formation, and achieves sustained release of the drugs for up to 12 days. With only a single intratumoral injection, the combination treatment with erastin and defactinib produces further anti-tumor performance both in xenograft and KrasG12D-engineered primary PDAC mice and synergistically promotes the infiltration of CD8+ cytotoxic T cells and the reduction of type II macrophages. The findings may provide a novel promising strategy for the clinical treatment of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Hydrogels , Pancreatic Neoplasms , Animals , Hydrogels/chemistry , Carcinoma, Pancreatic Ductal/drug therapy , Mice , Pancreatic Neoplasms/drug therapy , Humans , Cell Line, Tumor , Tumor Microenvironment/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Synergism , Micelles , Immunotherapy/methods
2.
Anal Chem ; 95(37): 14086-14093, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37665143

ABSTRACT

In recent years, optical tweezers have become a novel tool for biodetection, and to improve the inefficiency of a single trap, the development of multitraps is required. Herein, we constructed a set of hybrid multitrap optical tweezers with the balance of stability and flexibility by the combination of two different beam splitters, a diffraction optical element (DOE) and galvano mirrors (GMs), to capture polystyrene (PS) microbeads in aqueous solutions to create an 18-trap suspended array. A sandwich hybridization strategy of DNA-miRNA-DNA was adopted to detect three kinds of target miRNAs associated with triple negative breast cancer (TNBC), in which different upconversion nanoparticles (UCNPs) with red, green, and blue emissions were applied as luminescent tags to encode the carrier PS microbeads to further indicate the levels of the targets. With encoded luminescent microbeads imaged by a three-channel microscopic system, the biodetection displayed high sensitivity with low limits of detection (LODs) of 0.27, 0.32, and 0.33 fM and exceptional linear ranges of 0.5 fM to 1 nM, 0.7 fM to 1 nM, and 1 fM to 1 nM for miR-343-3p, miR-155, and miR-199a-5p, respectively. In addition, this bead-based assay method was demonstrated to have the potential for being applied in patients' serum by satisfactory standard addition recovery experiment results.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Microspheres , Optical Tweezers , Polystyrenes
3.
Anal Chem ; 95(12): 5443-5453, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36930753

ABSTRACT

The detection of hydrogen sulfide (H2S), the third gas signaling molecule, is a promising strategy for identifying the occurrence of certain diseases. However, the conventional single- or dual-signal detection can introduce false-positive or false-negative results, which ultimately decreases the diagnostic accuracy. To address this limitation, we developed a luminescent, photothermal, and electrochemical triple-signal detection platform by optically trapping the synthetic highly doped upconversion coupled SiO2 microbeads coated with metal-organic frameworks H-UCNP-SiO2@HKUST-1 (H-USH) to detect the concentration of H2S. The H-USH was first synthesized and proved to have stable structure and excellent luminescent, photothermal, and electrochemical properties. Under 980 nm optical trapping and 808 nm irradiation, H-USH showed great detection linearity, a low limit of detection, and high specificity for H2S quantification via triple-signal detection. Moreover, H-USH was captured by optical tweezers to realize quantitative detection of H2S content in serum of acute pancreatitis and spontaneously hypertensive rats. Finally, by analyzing the receiver operating characteristic (ROC) curve, we concluded that triple-signal detection of H2S was more accurate than single- or dual-signal detection, which overcame the problem of false-negative/positive results in the detection of H2S in actual serum samples.


Subject(s)
Hydrogen Sulfide , Pancreatitis , Rats , Animals , Hydrogen Sulfide/chemistry , Luminescence , Electrochemistry , Acute Disease , Silicon Dioxide , Microspheres
4.
ACS Sens ; 7(5): 1572-1580, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35482449

ABSTRACT

Although great headway has been made in DNAzyme-based detection of Pb2+, its adaptability, sensitivity, and accessibility in complex media still need to be improved. For this, we introduce new ways to surmount these hurdles. First, a spherical nucleic acid (SNA) fluorescence probe (Au nanoparticles-DNAzyme probe) is utilized to specifically identify Pb2+ and its suitability for precise detection of Pb2+ in complex samples due to its excellent nuclease resistance. Second, the sensitivity of Pb2+ detection is greatly enhanced via the use of a clustered regularly interspaced short palindromic repeats-Cas12a with target recognition accuracy to amplify the fluorescent signal upon the trans cleavage of the SNA (signal probe), and the limit of detection reaches as low as 86 fM. Third, we boost the fluorescence on photonic crystal chips with a bionic periodic arrangement by employing a straightforward detection device (smartphone and portable UV lamp) to achieve on-site detection of Pb2+ with the limit of detection as low as 24 pM. Based on the abovementioned efforts, the modified Pb2+ fluorescence sensor has the advantages of higher sensitivity, better specificity, accessibility, less sample consumption, and so forth. Moreover, it can be applied to accurately detect Pb2+ in complex biological or environmental samples, which is of great promise for widespread applications.


Subject(s)
DNA, Catalytic , Metal Nanoparticles , CRISPR-Cas Systems , Gold , Lead
5.
Ther Adv Chronic Dis ; 11: 2040622320916014, 2020.
Article in English | MEDLINE | ID: mdl-32523664

ABSTRACT

BACKGROUND: Although regulatory T cells (Tregs) play crucial roles in the maintenance of immune hemostasis, the numbers of peripheral Tregs in patients with psoriatic arthritis (PsA) remain unclear. We measured these numbers and the efficacy and safety of low-dose interleukin-2 (IL-2) therapy. METHODS: We recruited 95 PsA patients, of whom 22 received subcutaneous low-dose IL-2 [0.5 million international units (MIU) per day for 5 days] combined with conventional therapies. The absolute numbers of cells in peripheral CD4+ T cell subsets were measured via modified flow cytometry. Clinical and laboratory indicators were compared before and after treatment. RESULTS: PsA patients had lower peripheral Treg numbers than healthy controls (p < 0.01), correlating significantly and negatively with the levels of disease indicators (p < 0.05). Although low-dose IL-2 significantly increased the Th17 and Treg numbers in PsA patients compared with the baseline values, the Treg numbers rose much more rapidly than those of Th17 cells, re-balancing the Th17 and Treg proportions. Low-dose IL-2 combination therapy rapidly reduced PsA disease activities as indicated by the DAS28 instrument, thus the number of tender joints, visual analog scale pain, physician global assessment, the dermatology life quality index score, and the health assessment questionnaire score (all p < 0.05). CONCLUSION: PsA patients exhibited low Treg numbers. Low-dose IL-2 combination treatment increased these numbers and relieved disease activity without any apparent side effects. Additional studies are required to explore the long-term immunoregulatory utility of IL-2 treatment.

6.
CNS Neurosci Ther ; 26(2): 177-188, 2020 02.
Article in English | MEDLINE | ID: mdl-31612615

ABSTRACT

AIMS: Sepsis-associated encephalopathy (SAE) is a common complication of severe sepsis. Our goal was to investigate the role of immunity-related GTPase M1 (IRGM1) in SAE and its underlying mechanism. METHODS: A mouse sepsis model was established by cecal ligation and perforation. SAE was diagnosed by behavior, electroencephalography, and somatosensory evoked potentials. Wild-type mice with SAE were treated with SB203580 to block the p38 mitogen-activated protein kinase (MAPK) signaling pathway. We assessed hippocampal histological changes and the expression of IRGM1, interferon-γ (IFN-γ), and p38 MAPK signaling pathway-related proteins. RESULTS: Immunity-related GTPase M1 and IFN-γ levels increased in the hippocampus, with apoptosis, autophagy, and the p38 MAPK signaling pathway activated in neurons. Administration of SB203580 to mice with SAE reduced apoptosis and autophagy. Relative to wild-type mice with SAE, the general condition of Irgm1-/- mice with SAE was worsened, the p38 MAPK signaling pathway was inhibited, and neuronal apoptosis and autophagy were reduced. The absence of IRGM1 exacerbated SAE, with higher p38 MAPK signaling pathway activity and increased apoptosis and autophagy. CONCLUSIONS: During SAE, IRGM1 can at least partially regulate apoptosis and autophagy in hippocampal neurons through the p38 MAPK signaling pathway.


Subject(s)
Apoptosis , GTP-Binding Proteins/genetics , Hippocampus/pathology , Neurons/pathology , Sepsis-Associated Encephalopathy/pathology , Animals , Behavior, Animal , Electroencephalography , Evoked Potentials, Somatosensory , Imidazoles/pharmacology , Interferon-gamma/metabolism , Intestinal Perforation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pyridines/pharmacology , Sepsis-Associated Encephalopathy/psychology , Vital Signs , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
7.
Bioorg Med Chem ; 25(1): 166-174, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28340987

ABSTRACT

A series of curcumin derivatives as potent dual inhibitors of xanthine oxidase (XOD) and urate transporter 1 (URAT1) was discovered as anti-hyperuricemic agents. These compounds proved efficient effects on anti-hyperuricemic activity and uricosuric activity in vivo. More importantly, some of them exhibited proved efficient effects on inhibiting XOD activity and suppressing uptake of uric acid via URAT1 in vitro. Especially, the treatment of 4d was demonstrated to improve uric acid over-production and under-excretion in oxonate-induced hyperuricemic mice through regulating XOD activity and URAT1 expression. Docking study was performed to elucidate the potent XOD inhibition of 4d. Compound 4d may serve as a tool compound for further design of anti-hyperuricemic drugs targeting both XOD and URAT1.


Subject(s)
Curcumin/analogs & derivatives , Curcumin/therapeutic use , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Hyperuricemia/drug therapy , Organic Anion Transporters/antagonists & inhibitors , Organic Cation Transport Proteins/antagonists & inhibitors , Xanthine Oxidase/antagonists & inhibitors , Animals , Curcumin/pharmacology , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Hyperuricemia/metabolism , Male , Mice , Models, Molecular , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/metabolism , Uric Acid/metabolism , Xanthine Oxidase/metabolism
8.
Expert Opin Ther Pat ; 27(6): 643-656, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27998201

ABSTRACT

INTRODUCTION: Cathepsins play an important role in protein degradation and processing. Aberrant cathepsin B or L is closely associated with many serious diseases such as cancer, osteoporosis and autoimmune disorders. Therefore, development of potent and selective cathepsin B and L inhibitors has aroused much attention in recent years. Although several classes of cathepsin inhibitors are presently available, there are still some problems to solve, such as broad-spectrum inhibition to protease, specially cysteine proteases, which lead to unpredictable side effects in clinical trials. Therefore, it is very necessary to discovery new scaffolds and new application of cathepsin B and L inhibitors for developing therapeutic agents for treating diseases mediated by cathepsin B or L. Areas covered: This updated review summarizes new patents on cathepsin B and L inhibitors from 2010 to present. Expert opinion: The review gives the latest development in the area of inhibitors of cathepsin B and L, which have been considered key therapeutic targets for the development of drugs treating related diseases. This review puts emphasis on the discovery of novel small molecule inhibitors of cathepsin B and L, as well as their new application as new therapeutic agents.


Subject(s)
Cathepsin B/antagonists & inhibitors , Cathepsin L/antagonists & inhibitors , Drug Design , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/physiopathology , Cathepsin B/metabolism , Cathepsin L/metabolism , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/pathology , Osteoporosis/drug therapy , Osteoporosis/physiopathology , Patents as Topic
9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 28(8): 851-5, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-22863595

ABSTRACT

AIM: To investigate the expression of the oxidative stress proteins in human clear-cell renal cell carcinoma (CRCC) cell line (RLC-310) and normal renal proximal tubule epithelial cell line (HK-2), the CRCC and the corresponding normal renal tissues. METHODS: RLC-310 and HK-2 cells were cultured in vitro. Total proteins of the two cell lines were separated by PF-2D protein fractionation system. The differentially expressed proteins of the two cell lines were analyzed using capillary LC-ESI-MS/MS and identified using the protein database. The representative differential oxidative stress proteins were verified by immunohistochemistry in the CRCC and corresponding normal renal tissues. RESULTS: Twelve differentially expressed oxidative stress proteins were identified, including peroxiredoxin-1, peroxiredoxin-6 (PRX-6), superoxide dismutase[Cu-Zn] SOD1, catalase, glutathione peroxidase 1, glutathione synthetase, glutathione S-transferase Pi (GSTPi), thioredoxin, heat shock protein 10 (HSP10), HSP60, HSP70 and HSP90. Three representative differential proteins PRX-6, HSP60 and GSTPi were both expressed in RLC-310 and HK-2, and the levels of these proteins were significantly higher in RLC-310 than those in HK-2 (P<0.05). The levels of these proteins were significantly higher in CRCC than those in corresponding normal renal tissues (P<0.05). CONCLUSION: A series of oxidative stress proteins are overexpressed in the CRCC. They play an important role in preventing oxidative damage of CRCC cells.


Subject(s)
Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Oxidative Stress , Proteins/metabolism , Adult , Aged , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Glutathione S-Transferase pi/metabolism , Heat-Shock Proteins/metabolism , Humans , Kidney Neoplasms/genetics , Male , Middle Aged , Oxidative Stress/genetics , Peroxiredoxin VI/metabolism , Peroxiredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...