Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 328
Filter
1.
Am J Cancer Res ; 14(5): 2055-2071, 2024.
Article in English | MEDLINE | ID: mdl-38859850

ABSTRACT

Thyroid cancer (THCA) is the most common endocrine malignancy, mainly affecting women's unilateral glandular lobes. However, for relapsed and distant metastasis of THCA patients, the existing early diagnosis and treatment methods were still insufficient, and a new method was urgently needed to diagnose and treat them. Nucleolar and coiled-body phosphoprotein 1 (NOLC1) was one of the most phosphorylated proteins in the cell, which was located mainly in the nucleolus. In addition, more and more studies have confirmed that NOLC1 plays a crucial role in various pathological processes, such as the occurrence and progression of cancer and viral infection. A previous study showed that NOLC1, as a member of RNA-binding protein, was significantly correlated with the prognosis of THCA patients. However, further exploration of NOLC1 in THCA is limited. To further explore the role of NOLC1 in THCA, we conducted expression and survival prognosis analysis of NOLC1 using multiple databases. We also evaluated the correlation between NOLC1 gene expression and clinical characteristics of THCA patients. Furthermore, we analyzed the relationship between NOLC1 and other genes, followed by enrichment analysis to investigate its metabolic pathways and molecular metabolism processes. Additionally, we examined the association between immune cell infiltration in tumor microenvironment and NOLC1. Notably, through vitro experiments, we confirmed the tumor suppressive effect of NOLC1 on the proliferation and migration of human THCA cells, providing evidence for clinical diagnosis of THCA. Furthermore, we confirmed the tumor suppressive effect of NOLC1 in vivo xenograft assay. To sum up, our results suggest that NOLC1 is a tumor suppressor gene for THCA.

2.
Transplant Cell Ther ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838781

ABSTRACT

BACKGROUND: Preemptive therapy (PET) historically has been the primary strategy to reduce early-onset cytomegalovirus (CMV) reactivation after allogeneic hematopoietic cell transplantation (HCT) but is associated with antiviral-associated toxicities and increases in healthcare resource utilization and cost. Despite its high cost, letermovir (LTV) prophylaxis has largely supplanted PET due to its effectiveness and tolerability. Direct comparisons between LTV and PET approaches on economic and clinical outcomes after allogeneic HCT remain limited. OBJECTIVE: To compare total cost of care (inpatient and outpatient) between LTV prophylaxis and PET through day+180 after allogeneic HCT. STUDY DESIGN: Adult allogeneic CMV seropositive (R+) HCT recipients who initiated LTV <30 days after HCT between 01/01/18 and 12/31/18 were matched 1:1 to allogeneic CMV R+ HCT recipients between 01/01/15 and 12/31/17 (PET cohort). Patients were grouped into high risk (HR) or standard risk (SR) for CMV to compare the LTV and PET cohorts. Direct costs for each patient's index HCT admission and all subsequent inpatient and outpatient care through day+180 after HCT were determined and converted into 2021 US dollars and then to Medicare proportional dollars (MPD). A secondary analysis using 2019 average wholesale price was conducted to specifically evaluate anti-CMV medication cost. RESULTS: There were a total of 176 patients with 54 HR CMV pairs and 34 SR CMV pairs. No differences in survival between LTV and PET for both HR and SR CMV groups were observed. The rate of clinically significant CMV infection decreased for both HR CMV (11/54, 20.4% vs 38/54, 70.4%, P< .001) and SR CMV (1/34, 2.9% vs 12/34, 35.3%, P< .001) patients who were given LTV prophylaxis with corresponding reductions in val(ganciclovir) and foscarnet (HR CMV only) use. Among HR CMV patients, LTV prophylaxis was associated with reductions in CMV-related readmissions (3/54, 5.6% vs 18/54, 33.3%, P<.001) and outpatient visits within the first 100 days after HCT (20 vs 25, P=.002), and a decreased median total cost of care ($36,018 vs $75,525, P<.001) in MPD was observed. For SR CMV patients on LTV, a significant reduction in the median inpatient cost ($15,668 vs $27,818, P<.001) was found, but this finding was offset by a higher median outpatient cost ($26,145 vs $20,307, P=.030) that was not CMV-driven. CONCLUSIONS: LTV prophylaxis is highly effective in reducing clinically significant CMV reactivations for both HR and SR HCT recipients. In this study, LTV prophylaxis was associated with a decreased total cost of care for HR CMV patients through day+180. Specifically, reductions in CMV-related readmissions, exposure to CMV-directed antiviral agents, and outpatient visits in the first 100 days after HCT were observed. SR CMV patients receiving LTV prophylaxis benefited by having a reduced inpatient cost of care due to lowered room and pharmacy costs.

3.
Eur J Med Chem ; 275: 116541, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38851056

ABSTRACT

Psammaplin A (PsA), a symmetrical bromotyrosine-derived disulfide marine metabolite, has been reported could inhibit HDAC1/2/3 through its thiol monomer. Inspired by the disuflide bond structure of this marine natural product, we designed and synthesized a series of PsA analogues, in which the disulfide bond of PsA was replaced with diselenide bond or cyclic disulfide/diselenide/selenenylsulfide motifs. We also studied the HDAC inhibition, cell growth inhibition, and apoptosis induction of these PsA analogues. The results showed that, all the synthetic diselenide analogues and cyclic selenenyl sulfide compounds exhibited better antiproferative activity than their counterpart of disulfide analogues. Among the prepared analogues, diselenide analogue P-503 and P-116 significantly increased the ability of inhibiting HDAC6 and induced apoptosis and G2/M cell cycle arrest. However, cyclic selenenylsulfides analogues P-111 lost its HDAC inhibitory ability and exhibited no effect on cell cycle and apoptosis, indicating that the anti-proliferative mechanism of cyclic selenenylsulfides analogues has changed.

4.
Biomed Pharmacother ; 176: 116902, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870626

ABSTRACT

Drug resistance in hepatocellular carcinoma has posed significant obstacles to effective treatment. Recent evidence indicates that, in addition to traditional gene mutations, epigenetic recoding plays a crucial role in HCC drug resistance. Unlike irreversible gene mutations, epigenetic changes are reversible, offering a promising avenue for preventing and overcoming drug resistance in liver cancer. This review focuses on various epigenetic modifications relevant to drug resistance in HCC and their underlying mechanisms. Additionally, we introduce current clinical epigenetic drugs and clinical trials of these drugs as regulators of drug resistance in other solid tumors. Although there is no clinical study to prevent the occurrence of drug resistance in liver cancer, the development of liquid biopsy and other technologies has provided a bridge to achieve this goal.

5.
Small ; : e2401392, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705862

ABSTRACT

Enhancing the utilization of visible-light-active semiconductors with an excellent apparent quantum efficiency (AQE) remains a significant and challenging goal in the realm of photocatalytic water splitting. In this study, a fully condensed sulfur-doped poly(heptazine imide) metalized with Na (Na-SPHI) is synthesized by an ionothermal method by using eutectic NaCl/LiCl mixture as the ionic solvent. Comprehensive characterizations of the obtained Na-SPHI reveal several advantageous features, including heightened light absorption, facilitated exciton dissociation, and expedited charge transfer. More importantly, solvated electron, powerful reducing agents, can be generated on the surface of Na-SPHI upon irradiation with visible light. Benefiting from above advantage, the Na-SPHI exhibits an excellent H2 evolution rate of 571.8 µmol·h-1 under visible light illumination and a super-high AQE of 61.7% at 420 nm. This research emphasizes the significance of the solvated electron on the surface of photocatalyst in overcoming the challenges associated with visible light-driven photocatalysis, showcasing its potential application in photocatalytic water splitting.

6.
Cell Biochem Biophys ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713401

ABSTRACT

OBJECTIVE: Panax quinquefolius saponins (PQS) and Panax notoginseng saponins (PNS) are key bioactive compounds in Panax quinquefolius L. and Panax notoginseng, commonly used in the treatment of clinical ischemic heart disease. However, their potential in mitigating myocardial ischemia-reperfusion injury remains uncertain. This study aims to evaluate the protective effects of combined PQS and PNS administration in myocardial hypoxia/reoxygenation (H/R) injury and explore the underlying mechanisms. METHODS: To investigate the involvement of HIF-1α/BNIP3 mitophagy pathway in the myocardial protection conferred by PNS and PQS, we employed small interfering BNIP3 (siBNIP3) to silence key proteins of the pathway. H9C2 cells were categorized into four groups: control, H/R, H/R + PQS + PNS, and H/R + PQS + PNS+siBNIP3. Cell viability was assessed by Cell Counting Kit-8, apoptosis rates determined via flow cytometry, mitochondrial membrane potential assessed with the JC-1 fluorescent probes, intracellular reactive oxygen species detected with 2',7'-dichlorodihydrofluorescein diacetate, mitochondrial superoxide production quantified with MitoSOX Red, and autophagic flux monitored with mRFP-GFP-LC3 adenoviral vectors. Autophagosomes and their ultrastructure were visualized through transmission electron microscopy. Moreover, mRNA and protein levels were analyzed via real-time PCR and Western blotting. RESULTS: PQS + PNS administration significantly increased cell viability, reduced apoptosis, lowered reactive oxygen species levels and mitochondrial superoxide production, mitigated mitochondrial dysfunction, and induced autophagic flux. Notably, siBNIP3 intervention did not counteract the cardioprotective effect of PQS + PNS. The PQS + PNS group showed downregulated mRNA expression of HIF-1α and BNIP3, along with reduced HIF-1α protein expression compared to the H/R group. CONCLUSIONS: PQS + PNS protects against myocardial H/R injury, potentially by downregulating mitophagy through the HIF-1α/BNIP3 pathway.

7.
Front Neurosci ; 18: 1181670, 2024.
Article in English | MEDLINE | ID: mdl-38737099

ABSTRACT

Given its high morbidity, disability, and mortality rates, ischemic stroke (IS) is a severe disease posing a substantial public health threat. Although early thrombolytic therapy is effective in IS treatment, the limited time frame for its administration presents a formidable challenge. Upon occurrence, IS triggers an ischemic cascade response, inducing the brain to generate endogenous protective mechanisms against excitotoxicity and inflammation, among other pathological processes. Stroke patients often experience limited recovery stages. As a result, activating their innate self-protective capacity [endogenous brain protection (EBP)] is essential for neurological function recovery. Acupuncture has exhibited clinical efficacy in cerebral ischemic stroke (CIS) treatment by promoting the human body's self-preservation and "Zheng Qi" (a term in traditional Chinese medicine (TCM) describing positive capabilities such as self-immunity, self-recovery, and disease prevention). According to research, acupuncture can modulate astrocyte activity, decrease oxidative stress (OS), and protect neurons by inhibiting excitotoxicity, inflammation, and apoptosis via activating endogenous protective mechanisms within the brain. Furthermore, acupuncture was found to modulate microglia transformation, thereby reducing inflammation and autoimmune responses, as well as promoting blood flow restoration by regulating the vasculature or the blood-brain barrier (BBB). However, the precise mechanism underlying these processes remains unclear. Consequently, this review aims to shed light on the potential acupuncture-induced endogenous neuroprotective mechanisms by critically examining experimental evidence on the preventive and therapeutic effects exerted by acupuncture on CIS. This review offers a theoretical foundation for acupuncture-based stroke treatment.

8.
Chin J Cancer Res ; 36(2): 114-123, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38751440

ABSTRACT

Objective: Unresectable hepatocellular carcinoma (uHCC) continues to pose effective treatment options. The objective of this study was to assess the efficacy and safety of combining low-dose cyclophosphamide with lenvatinib, pembrolizumab and transarterial chemoembolization (TACE) for the treatment of uHCC. Methods: From February 2022 to November 2023, a total of 40 patients diagnosed with uHCC were enrolled in this small-dose, single-center, single-arm, prospective study. They received a combined treatment of low-dose cyclophosphamide with lenvatinib, pembrolizumab, and TACE. Study endpoints included progression-free survival (PFS), objective response rate (ORR), and safety assessment. Tumor response was assessed using the modified Response Evaluation Criteria in Solid Tumors (mRECIST), while survival analysis was conducted through Kaplan-Meier curve analysis for overall survival (OS) and PFS. Adverse events (AEs) were evaluated according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 5.0). Results: A total of 34 patients were included in the study. The median follow-up duration was 11.2 [95% confidence interval (95% CI), 5.3-14.6] months, and the median PFS (mPFS) was 15.5 (95% CI, 5.4-NA) months. Median OS (mOS) was not attained during the study period. The ORR was 55.9%, and the disease control rate (DCR) was 70.6%. AEs were reported in 27 (79.4%) patients. The most frequently reported AEs (with an incidence rate >10%) included abnormal liver function (52.9%), abdominal pain (44.1%), abdominal distension and constipation (29.4%), hypertension (20.6%), leukopenia (17.6%), constipation (17.6%), ascites (14.7%), and insomnia (14.7%). Abnormal liver function (14.7%) had the most common grade 3 or higher AEs. Conclusions: A combination of low-dose cyclophosphamide with lenvatinib, pembrolizumab, and TACE is safe and effective for uHCC, showcasing a promising therapeutic strategy for managing uHCC.

9.
Plant Dis ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764338

ABSTRACT

Blue honeysuckle (Lonicera caerulea L.) cultivation has gradually expanded in China but continues to be limited by challenges such as leaf spot disease. Between September 2022 and September 2023, a leaf spot disease was observed on approximately 30% of 'Lanjingling' blue honeysuckles grown in a 2.66 ha field (a total of about 11,000 plants) in Jiamusi city (130.47°E, 46.16°N), Heilongjiang Province, China. Affected plants displayed brown necrotic lesions on their leaves that gradually expanded in area until the leaves fell off the plant entirely. Small, 3 to 4 mm segments of infected tissue from 50 randomly selected leaves were surface sterilized with 75% ethanol for 30 s and 5% sodium hypochlorite (NaOCl) for 3 min, rinsed three times with sterile distilled water, dried on paper towels, and plated in 9 cm Petri dishes containing potato dextrose agar (PDA) (Yan et al. 2022). Five pathogens (LD-232, LD-233, LD-234, LD-235, and LD-236) were isolated on PDA and displayed a conidia morphology consistent with Pseudopithomyces spp. (Perelló et al. 2017). The fungal colonies on PDA were villiform, white, and whorled and had sparse aerial mycelium on the surface with black conidiomata. The conidia were obpyriform and dark brown, had 0 to 3 transverse and 0 to 1 longitudinal septa, and measured 9.00 to 15.30 µm × 5.70 to 9.30 µm in size (n = 50). Genomic DNA was extracted from a representative isolate, LD-232, for molecular verification and PCR amplification was performed with ITS1/ITS4 (White et al. 1990), LROR/LR7 (Carbone and Kohn 1999), and RPB2-5F2/RPB2-7CR (Liu et al. 1999) primers. Sequences of LD-232 ITS (OR835654), LSU (OR835652), and RPB2 (OR859769) revealed 99.8% (530/531 nt), 98.8% (639/647 nt), and 99.8% (1015/1017 nt) shared identity with Pseudopithomyces chartarum sequences (OP269600, OP237014, and MK434892), respectively (Wu et al. 2023). Bayesian inference (BI) was used to construct the phylogenies using Mr. Bayes v. 3.2.7 to confirm the identity of the isolates (Ariyawansa et al. 2015). Phylogenetic trees cannot be constructed based on the genes' concatenated sequences because selective strains do not have complete rDNA-ITS, LSU, and RPB2 sequences. Therefore, based on the morphological characteristics and molecular phylogeny, LD-232 was identified as P. chartarum (Perelló et al. 2017; Wu et al. 2023). A pathogenicity test was performed with six healthy, two-year-old 'Lanjingling' blue honeysuckle plants. Three plants were inoculated by spraying the LD-232 conidial suspension (1 × 106 spores/ml) or clean water as an experimental control condition (Wu et al. 2023; Yan et al. 2023). All plants were cultured in a greenhouse at 28℃ under a 12-h light/dark cycle, and each experiment was replicated three times. Typical leaf spot symptoms were observed on inoculated leaves after 10 days. The same pathogens were reisolated from infected leaves, displayed the same morphological and molecular traits, and were again identified as P. chartarum, confirming Koch's postulate. P. chartarum previously caused leaf spot disease on Tetrapanax papyrifer in China (Wu et al. 2023). To our knowledge, this is the first report of blue honeysuckle leaf spot caused by P. chartarum in China. Identification of P. chartarum as a disease agent on blue honeysuckle will help guide future management of leaf diseases for this economically important small fruit tree.

10.
J Colloid Interface Sci ; 671: 354-373, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38815372

ABSTRACT

Berberine (Ber), an isoquinoline alkaloid, is a potential drug therapy for ulcerative colitis (UC) because of its anti-inflammatory activity, high biological safety, and few side effects. Nevertheless, its clinical application is hindered by its limited water solubility and low bioavailability. Currently, compared to synthetic nanocarriers, exosomes as carriers possess advantages such as low toxicity, high stability, and high specificity. Human placental mesenchymal stem cell-derived exosomes (HplMSC-Exos) have emerged as a promising drug delivery system, offering intrinsic anti-inflammatory and antioxidant activities. Therefore, we engineered MSC-Exos loaded with Ber (Exos-Ber) to enhance the solubility and bioavailability of Ber and for colon targeting, revealing a novel approach for treating UC with natural compounds. Structurally and functionally, Exos-Ber closely resembled unmodified Exos. Both in vitro and in vivo investigations confirmed the antioxidant and anti-inflammatory properties of Exos-Ber. Notably, Exos-Ber exhibited reparative effects on injured epithelial cells and reduced cellular apoptosis. Furthermore, Exos-Ber concurrently demonstrated anti-inflammatory and antioxidant activities, contributing to the mitigation of UC, possibly through its modulation of the MAPK signaling pathway. Overall, our findings demonstrate the potential of Exos-Ber as a promising therapeutic option for alleviating UC, highlighting its capacity to enhance the clinical applicability of Ber.


Subject(s)
Berberine , Colitis, Ulcerative , Exosomes , Mesenchymal Stem Cells , Exosomes/metabolism , Exosomes/chemistry , Colitis, Ulcerative/therapy , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Berberine/pharmacology , Berberine/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Humans , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Apoptosis/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Cells, Cultured , Female , Particle Size , Cell Survival/drug effects
11.
BMC Cancer ; 24(1): 567, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711020

ABSTRACT

BACKGROUND: Pyroptosis is a type of programmed cell death mediated by the gasdermin family. Gasdermin B (GSDMB), as a member of gasdermin family, can promote the occurrence of cell pyroptosis. However, the correlations of the GSDMB expression in colorectal cancer with clinicopathological predictors, immune microenvironment, and prognosis are unclear. METHODS: Specimens from 267 colorectal cancer cases were analyzed by immunohistochemistry to determine GSDMB expression, CD3+, CD4+, and CD8+ T lymphocytes, CD20+ B lymphocytes, CD68+ macrophages, and S100A8+ immune cells. GSDMB expression in cancer cells was scored in the membrane, cytoplasm, and nucleus respectively. GSDMB+ immune cell density was calculated. Univariate and multivariate survival analyses were performed. The association of GSDMB expression with other clinicopathological variables and immune cells were also analyzed. Double immunofluorescence was used to identify the nature of GSDMB+ immune cells. Cytotoxicity assays and sensitivity assays were performed to detect the sensitivity of cells to 5-fluorouracil. RESULTS: Multivariate survival analysis showed that cytoplasmic GSDMB expression was an independent favorable prognostic indicator. Patients with positive cytoplasmic or nuclear GSDMB expression would benefit from 5-fluorouracil based chemotherapy. The assays in vitro showed that high GSDMB expression enhanced the sensitivity of colorectal cancer cells to 5-fluorouracil. Patients with positive membranous or nuclear GSDMB expression had more abundant S100A8+ immune cells in the tumor invasive front. Positive nuclear GSDMB expression indicated more CD68+ macrophages in the tumor microenvironment. Moreover, GSDMB+ immune cell density in the stroma was associated with a higher neutrophil percentage but a lower lymphocyte counts and monocyte percentage in peripheral blood. Furthermore, the results of double immunofluorescence showed that GSDMB co-expressed with CD68 or S100A8 in stroma cells. CONCLUSION: The GSDMB staining patterns are linked to its role in cancer progression, the immune microenvironment, systemic inflammatory response, chemotherapeutic efficacy, and prognosis. Colorectal cancer cells with high GSDMB expression are more sensitive to 5-fluorouracil. However, GSDMB expression in immune cells has different effects on cancer progression from that in cancer cells.


Subject(s)
Colorectal Neoplasms , Disease Progression , Gasdermins , Tumor Microenvironment , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/mortality , Male , Prognosis , Female , Middle Aged , Tumor Microenvironment/immunology , Aged , Biomarkers, Tumor/metabolism , Fluorouracil/therapeutic use , Fluorouracil/pharmacology , Neoplasm Proteins/metabolism , Immunohistochemistry , Adult , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Pyroptosis
12.
Article in English | MEDLINE | ID: mdl-38666624

ABSTRACT

Efficient and convenient delivery of exogenous molecules into cells is important for cell biology research. However, many intracellular delivery methods require carrier-mediated or physical field assistance, complicating the delivery process. Here, a general, simple, and effective method for in situ single-cell intracellular delivery is reported. A solution containing digitonin and cargo is precisely applied to single cells using a microfluidic probe. Digitonin binds to cholesterol in the plasma membrane to induce perforation, and the cargo enters the cell through the pore. By optimizing parameters, propidium iodide (0.67 kDa) and FITC-dextran (10, 40, and 150 kDa) can be successfully introduced into single cells within 3 min while maintaining cell viability. To prove the potential of this method for cell research, we delivered cytochrome C (13 kDa) and cyclophilin A (18 kDa) into cells by this method. The delivered cytochrome C successfully induces cell apoptosis by activating the caspase pathway, and cyclophilin A performs an antioxidant effect in the cells, which may enhance the drug resistance of glioma cells. It is believed that this method will be an attractive tool for single-cell intracellular delivery.

13.
Plants (Basel) ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674466

ABSTRACT

This study aimed to explore the impact of L-arginine (Arg) on the development of resistance to Alternaria tenuissima (A. tenuissima) in blueberries. The metabolism of reactive oxygen species, pathogenesis-related proteins (PRs), and jasmonic acid (JA) biosynthesis pathways were analyzed, including changes in activity and gene expression of key enzymes. The results indicated that Arg treatment could prevent the development of Alternaria fruit rot in postharvest blueberries. In addition, it was also found to induce a burst of hydrogen peroxide in the blueberries early on during storage, thereby improving their resistance to A. tenuissima. Arg treatment was observed to increase the activity of antioxidant enzymes (peroxidase, catalase, superoxide dismutase, and ascorbate peroxidase) and related gene expression, as well as the total levels of phenolics, flavonoids, and anthocyanin in the blueberries. The activity and gene expression of the PRs (chitinase and ß-1,3-glucanase) were elevated in Arg-treated blueberries, boosting their resistance to pathogens. Additionally, a surge in endogenous JA content was detected in Arg-treated blueberries, along with upregulated expression of key genes related the JA biosynthesis pathway (VcLOX1, VcAOS1, VcAOC, VcAOC3, VcOPR1, VcOPR3, VcMYC2, and VcCOI1), thereby further bolstering disease resistance. In conclusion, Arg treatment was determined to be a promising prospective method for controlling Alternaria fruit rot in blueberries.

14.
Small Methods ; : e2400356, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682271

ABSTRACT

Solid-state polymer lithium metal batteries (SSLMBs) have attracted considerable attention because of their excellent safety and high energy density. However, the application of SSLMBs is significantly impeded by uneven Li deposition at the interface between solid-state electrolytes and lithium metal anode, especially at a low temperature. Herein, this issue is addressed by designing an agarose-based solid polymer electrolyte containing branched structure. The star-structured polymer is synthesized by grafting poly (ethylene glycol) monomethyl-ether methacrylate and lithium 2-acrylamido-2-methylpropanesulfonate onto tannic acid. The star structure regulates Li-ion flux in the bulk of the electrolyte and at the electrolyte/electrode interfaces. This unique omnidirectional Li-ion transportation effectively improves ionic conductivity, facilitates a uniform Li-ion flux, inhibits Li dendrite growth, and alleviates polarization. As a result, a solid-state LiFePO4||Li battery with the electrolyte exhibits outstanding cyclability with a specific capacity of 134 mAh g-1 at 0.5C after 800 cycles. The battery shows a high discharge capacity of 145 mAh g-1 at 0.1 C after 200 cycles, even at 0 °C. The study offers a promising strategy to address the uneven Li deposition at the solid-state electrolyte/electrode interface, which has potential applications in long-life solid-state lithium metal batteries at a low temperature.

15.
Healthcare (Basel) ; 12(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38610125

ABSTRACT

Non-pharmaceutical midwifery techniques, including perineal warm compresses, to improve maternal outcomes remain controversial. The aims of this study are to assess the effects of perineal warm compresses on reducing perineal trauma and postpartum perineal pain relief. This systematic review included randomized controlled trials (RCTs). We searched seven bibliographic databases, three RCT register websites, and two dissertation databases for publications from inception to 15 March 2023. Chinese and English publications were included. Two independent reviewers conducted the risk of bias assessment, data extraction, and the evaluation of the certainty of the evidence utilizing the Cochrane risk of bias 2.0 assessment criteria, the Review Manager 5.4, and the online GRADEpro tool, respectively. Seven RCTs involving 1362 primiparous women were included. The combined results demonstrated a statistically significant reduction in the second-, third- and/or fourth- degree perineal lacerations, the incidence of episiotomy, and the relief of the short-term perineal pain postpartum (within two days). There was a potential favorable effect on improving the integrity of the perineum. However, the results did not show a statistically significant supportive effect on reducing first-degree perineal lacerations and the rate of perineal lacerations requiring sutures. In summary, perineal warm compresses effectively reduced the second-, third-/or fourth-degree perineal trauma and decreased the short-term perineal pain after birth.

16.
Chem Commun (Camb) ; 60(37): 4898-4901, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38629248

ABSTRACT

A heart-on-a-particle model based on multicompartmental microgel is proposed to simulate the heart microenvironment and study the cardiotoxicity of drugs. The relevant microgel was fabricated by a biocompatible microfluidic-based approach, where heart function-related HL-1 and HUVEC cells were arranged in separate compartments. Finally, the mechanism of aconitine-induced heart toxicity was elucidated using mass spectrometry and molecular biotechnology.


Subject(s)
Aconitine , Human Umbilical Vein Endothelial Cells , Lab-On-A-Chip Devices , Aconitine/chemistry , Humans , Cardiotoxicity/etiology , Cell Line , Particle Size , Cell Survival/drug effects
17.
Sports (Basel) ; 12(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38668559

ABSTRACT

BACKGROUND: The present study aimed to examine the effects of a 500 kcal reduction in daily energy intake alone and in combination with 90 min of moderate-to-vigorous aerobic exercise per week on body weight, body composition, and appetite sensations in young women with normal BMI and abnormal body fat percentage. METHODS: sixty-six young women with normal BMI and abnormal body fat percentage (21.33 ± 1.20 kg/m2 and 34.32 ± 2.94%) were randomly assigned into three groups: (1) caloric restriction (CR; n = 22), (2) caloric restriction with exercise (CR-EX; n = 22), and (3) control (C; n = 22). Data on anthropometry, blood samples, and subjective appetite sensations pre- and post-intervention were collected. RESULTS: After 4 weeks of intervention, CR and CR-EX groups both reduced body weight, fat percentage, and waist and hip circumferences compared to the C group (p < 0.05). Muscle mass of the CR group was significantly lower than that of the C group (-1.21 ± 0.86 kg vs. -0.27 ± 0.82 kg, p < 0.05), and no significant difference between CR-EX and C groups was observed. For appetite sensations, the subjects of the CR group showed significant increases in change of scores in desire to eat and prospective consumption than that of the C group (p < 0.05), while no significant difference between CR-EX and C groups was observed. CONCLUSION: A 500 kcal reduction in daily energy intake alone and in combination with 90 min of moderate-to-vigorous aerobic exercise per week could both reduce weight and improve body composition in young adult women with normal BMI and abnormal body fat percentage. More importantly, calorie restriction combined with exercise intervention was superior to calorie restriction alone in improving muscle mass loss and regulating appetite sensations.

18.
Nat Commun ; 15(1): 2981, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582783

ABSTRACT

Encoding- and retrieval-related neural activity jointly determine mnemonic success. We ask whether electroencephalographic activity can reliably predict encoding and retrieval success on individual trials. Each of 98 participants performed a delayed recall task on 576 lists across 24 experimental sessions. Logistic regression classifiers trained on spectral features measured immediately preceding spoken recall of individual words successfully predict whether or not those words belonged to the target list. Classifiers trained on features measured during word encoding also reliably predict whether those words will be subsequently recalled and further predict the temporal and semantic organization of the recalled items. These findings link neural variability predictive of successful memory with item-to-context binding, a key cognitive process thought to underlie episodic memory function.


Subject(s)
Electroencephalography , Memory, Episodic , Humans , Mental Recall , Semantics
19.
Article in English | MEDLINE | ID: mdl-38568772

ABSTRACT

The foundation model has recently garnered significant attention due to its potential to revolutionize the field of visual representation learning in a self-supervised manner. While most foundation models are tailored to effectively process RGB images for various visual tasks, there is a noticeable gap in research focused on spectral data, which offers valuable information for scene understanding, especially in remote sensing (RS) applications. To fill this gap, we created for the first time a universal RS foundation model, named SpectralGPT, which is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT). Compared to existing foundation models, SpectralGPT 1) accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS Big Data; 2) leverages 3D token generation for spatial-spectral coupling; 3) captures spectrally sequential patterns via multi-target reconstruction; 4) trains on one million spectral RS images, yielding models with over 600 million parameters. Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS Big Data applications within the field of geoscience across four downstream tasks: single/multi-label scene classification, semantic segmentation, and change detection.

20.
Eur J Pharmacol ; 974: 176601, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38677534

ABSTRACT

BACKGROUND: Hypoxia disrupts glucose metabolism in hepatocellular carcinoma (HCC). Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) plays an ontogenetic role. Thus, we aimed to explore the regulation of TRPM7 by hypoxia-induced factor (HIF) and its underlying mechanisms in HCC. METHODS: hypoxia was induced in multiple HCC cells using 1% O2 or CoCl2 treatment, and subsequently blocked using siRNAs targeting HIF-1α or HIF-2α as well as a HIF-1α protein synthesis inhibitor. The levels of HIF-1α and TRPM7 were assessed using quantitative PCR (qPCR) and Western blot analysis. Chromatin immunoprecipitation (ChIP) and luciferase assays were performed to observe the regulation of TRPM7 promoter regions by HIF-1α. A PCR array was utilized to screen glucose metabolism-related enzymes in HEK293 cells overexpressing TRPM7 induced by tetracycline, and then verified in TRPM7-overexpressed huh7 cells. Finally, CCK-8, transwell, scratch and tumor formation experiments in nude mice were conducted to examine the effect of TRPM7 on proliferation and metastasis in HCC. RESULTS: Exposure to hypoxia led to increase the levels of TRPM7 and HIF-1α in HCC cells, which were inhibited by HIF-1α siRNA or enhanced by HIF-1α overexpression. HIF-1α directly bound to two hypoxia response elements (HREs) in the TRPM7 promoter. Several glycolytic metabolism-related enzymes, were simultaneously upregulated in HEK293 and huh7 cells overexpressing TRPM7 during hypoxia. In vitro and in vivo experiments demonstrated that TRPM7 promoted the proliferation and metastasis of HCC cells. CONCLUSIONS: TRPM7 was directly transcriptionally regulated by HIF-1α, leading to glycolytic metabolic reprogramming and the promotion of HCC proliferation and metastasis in vitro and in vivo. Our findings suggest that TRPM7 might be a potential diagnostic indicator and therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Liver Neoplasms , TRPM Cation Channels , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Glycolysis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Animals , Cell Proliferation/drug effects , Cell Line, Tumor , Mice , HEK293 Cells , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Disease Progression , Cell Hypoxia , Cell Movement/drug effects , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...