Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cardiol ; 47(2): e24222, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38402531

ABSTRACT

Twelve studies involving 433 patients were included. After RDN treatment, LVMI decreased by 13.08 g/m2 (95% confidence interval [CI]: -18.38, -7.78; p < .00001), PWTd decreased by 0.60 mm (95% CI: -0.87, -0.34; p < .00001), IVSTd decreased by 0.78 mm (95% CI: -1.06, -0.49; p < .00001), and LVEF increased by 1.80% (95% CI: 0.71, 2.90; p = .001). However, there were no statistically significant improvements in LVIDd (95% CI: -1.40, 0.24; p = .17) and diastolic function (E/A) (95% CI: -0.04, 0.14; p = .28). Drug treatment for resistant hypertension (RH) is challenging. Renal denervation (RDN) is one of the most promising treatments for RH. Although studies have shown RDN can control blood pressure, the impacts of RDN on cardiac remodeling and cardiac function are unclear. This meta-analysis evaluated the effect of RDN on cardiac structure and function in patients with RH. PubMed, Embase, and Cochrane were used to conduct a systematic search. The main inclusion criteria were studies on patients with RH who received RDN and reported the changes in echocardiographic parameters before and after RDN. Echocardiographic parameters included left ventricular mass index (LVMI), end-diastolic left ventricular internal dimension (LVIDd), left ventricular end-diastolic posterior wall thickness (PWTd), end-diastolic interventricular septum thickness (IVSTd), E/A, and left ventricular ejection fraction (LVEF). Data was analyzed using RevMan. Twelve studies involving 433 patients were included. After RDN treatment, LVMI decreased by 13.08g/m2 (95%confidence interval [CI]: -18.38, -7.78, p < .00001), PWTd decreased by 0.60mm (95% CI: -0.87, -0.34, p < 0.00001), IVSTd decreased by 0.78mm (95% CI: -1.06, -0.49, p < .00001), and LVEF increased by 1.80% (95% CI: 0.71, 2.90, p = .001). However, there were no statistically significant improvements in LVIDd (95% CI: -1.40, 0.24, p = .17) and diastolic function (E/A) (95% CI: -0.04, 0.14, p =.28). This meta-analysis finds that RDN can improve left ventricular hypertrophy and ejection fraction in patients with RH but has no significant effect on LVIDd and diastolic function. However, more studies are warranted due to the lack of a strict control group, a limited sample size, and research heterogeneity.


Subject(s)
Hypertension , Ventricular Septum , Humans , Stroke Volume , Ventricular Remodeling , Ventricular Function, Left , Hypertension/diagnosis , Hypertension/surgery , Denervation
2.
Heliyon ; 10(3): e25546, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356496

ABSTRACT

Excessive neuronal excitation by glutamate is a well-established cause of neurotoxicity, leading to severe impairment of brain function. Excitotoxicity is a key factor in numerous neurodegenerative conditions. In this study, we investigated the neuroprotective effects of Danshensu (DSS) against monosodium glutamate (MSG)-induced neurotoxicity in adult mice and their offspring. We randomly divided one hundred 8-week-old Kunming mice (equal number of males and females) into a control group and an experimental group. The experimental group was further subdivided into various treatment groups, including MSG gavage treatment, bwbw DSS treatment group 1 (bwbw DSS treatment group 2, a drug control group, and a normal control group (receiving an equal volume of physiological saline for ten consecutive days). Additionally, another one hundred healthy 8-week-old Kunming mice were similarly divided into groups and treated. These mice were paired randomly (one male and one female) and pregnant females were housed separately to obtain offspring. Subsequently, we conducted histological and behavioral analyses on adult mice and their offspring. MSG treatment induced significant cellular edema and hippocampal damage in both the treated mice and their offspring. However, varying doses of DSS effectively counteracted the neurotoxic effects of MSG, with no adverse impact on brain tissue structure or neural function in either adult mice or their offspring. Behavioral experiments further confirmed that DSS exerted a substantial protective effect against MSG-induced impairment of learning and memory in the treated adult mice and their offspring, in addition to mitigating central nervous system overexcitation and inhibiting exploratory behavior. In conclusion, DSS exerts significant protective effects against MSG-induced neurotoxicity in both adult mice and their offspring.

3.
Redox Biol ; 64: 102778, 2023 08.
Article in English | MEDLINE | ID: mdl-37321061

ABSTRACT

Cardiovascular diseases caused by atherosclerosis (AS) seriously endanger human health, which is closely related to vascular smooth muscle cell (VSMC) phenotypes. VSMC phenotypic transformation is marked by the alteration of phenotypic marker expression and cellular behaviour. Intriguingly, the mitochondrial metabolism and dynamics altered during VSMC phenotypic transformation. Firstly, this review combs VSMC mitochondrial metabolism in three aspects: mitochondrial ROS generation, mutated mitochondrial DNA (mtDNA) and calcium metabolism respectively. Secondly, we summarized the role of mitochondrial dynamics in regulating VSMC phenotypes. We further emphasized the association between mitochondria and cytoskelton via presenting cytoskeletal support during mitochondrial dynamics process, and discussed its impact on their respective dynamics. Finally, considering that both mitochondria and cytoskeleton are mechano-sensitive organelles, we demonstrated their direct and indirect interaction under extracellular mechanical stimuli through several mechano-sensitive signaling pathways. We additionally discussed related researches in other cell types in order to inspire deeper thinking and reasonable speculation of potential regulatory mechanism in VSMC phenotypic transformation.


Subject(s)
Cardiovascular Diseases , Muscle, Smooth, Vascular , Humans , Muscle, Smooth, Vascular/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cytoskeleton/metabolism , Mitochondria/genetics , Phenotype , Myocytes, Smooth Muscle/metabolism , Cells, Cultured , Cell Proliferation
4.
Bioeng Transl Med ; 8(1): e10375, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684109

ABSTRACT

Cervical cancer metastasis is an important cause of death in cervical cancer. Previous studies have shown that epithelial-mesenchymal transition (EMT) of tumors promotes its invasive and metastatic capacity. Alterations in the extracellular matrix (ECM) and mechanical signaling are closely associated with cancer cell metastasis. However, it is unclear how matrix stiffness as an independent cue triggers EMT and promotes cervical cancer metastasis. Using collagen-coated polyacrylamide hydrogel models and animal models, we investigated the effect of matrix stiffness on EMT and metastasis in cervical cancer. Our data showed that high matrix stiffness promotes EMT and migration of cervical cancer hela cell lines in vitro and in vivo. Notably, we found that matrix stiffness regulates yes-associated protein (YAP) activity via PPIase non-mitotic a-interaction 1 (Pin1) with a non-Hippo mechanism. These data indicate that matrix stiffness of the tumor microenvironment positively regulates EMT in cervical cancer through the Pin1/YAP pathway, and this study deepens our understanding of cervical cancer biomechanics and may provide new ideas for the treatment of cervical cancer.

5.
Regen Biomater ; 7(4): 349-358, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32793380

ABSTRACT

Atherosclerosis is a key mechanism underlying the pathogenesis of cardiovascular disease, which is associated with high morbidity and mortality. In the field of precision medicine for the treatment of atherosclerosis, nanoparticle (NP)-mediated drug delivery systems have great potential, owing to their ability to release treatment locally. Cell-derived biomimetic NPs have attracted extensive attention at present due to their excellent targeting to atherosclerotic inflammatory sites, low immunogenicity and long blood circulation time. Here, we review the utility of cell-derived biomimetic NPs, including whole cells, cell membranes and extracellular vesicles, in the treatment of atherosclerosis.

6.
Environ Sci Pollut Res Int ; 23(14): 13822-31, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27072037

ABSTRACT

The dissipation of different residual states of tetracycline antibiotics (TCs) including oxytetracycline (OTC), tetracycline (TC), and chlortetracycline (CTC) laboratory microcosm systems was investigated in this study. The residues were fractionated by stepwise extractions into aqueous state (KCl solution extracts), organic state (MeOH extracts), residual state I (citric acid-sodium citrate buffer and ethyl acetate extracts) and residual state II (acetonitrile-EDTA-McIlvaine buffer extracts) for accurate evaluation of TCs pollution. The antibiotics in the aqueous state were hardly detected, whereas the antibiotics in the organic state dissipated relatively fast (not detectable within 15 days after application) and followed simple first-order kinetics (SFOK) (R (2) from 0.929 to 0.990). While first-order double-exponential decay model (FODED) (R (2) from 0.840 to 0.999) and availability-adjusted first-order model (AAFO) (R (2) from 0.939 to 0.999) had a better fit on the dissipation of both residue state I and II than SFOK. TCs in these states were likely sequestered into a dormant undegradable phase since no degradation product was detected during the entire experiment. In addition, the overall 50 % dissipation values (i.e., stability) of the three TCs were OTC > TC > CTC. The TCs tend to dissipate faster in the high water content and organic matter soil.


Subject(s)
Anti-Bacterial Agents/analysis , Chlortetracycline/analysis , Oxytetracycline/analysis , Soil Pollutants/analysis , Soil/chemistry , Tetracycline/analysis , China , Environmental Monitoring , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...