Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
CNS Neurosci Ther ; 30(5): e14729, 2024 05.
Article in English | MEDLINE | ID: mdl-38738958

ABSTRACT

BACKGROUND: Pituitary adenoma is one of the most common brain tumors. Most pituitary adenomas are benign and can be cured by surgery and/or medication. However, some pituitary adenomas show aggressive growth with a fast growth rate and are resistant to conventional treatments such as surgery, drug therapy, and radiation therapy. These tumors, referred to as refractory pituitary adenomas, often relapse or regrow in the early postoperative period. The tumor microenvironment (TME) has recently been identified as an important factor affecting the biological manifestations of tumors and acts as the main battlefield between the tumor and the host immune system. MAIN BODY: In this review, we focus on describing TME in pituitary adenomas and refractory pituitary adenomas. Research on the immune microenvironment of pituitary adenomas is currently focused on immune cells such as macrophages and lymphocytes, and extensive research and experimental verifications are still required regarding other components of the TME. In particular, studies are needed to determine the role of the TME in the specific biological behaviors of refractory pituitary adenomas, such as high invasion, fast recurrence rate, and high tolerance to traditional treatments and to identify the mechanisms involved. CONCLUSION: Overall, we summarize the similarities and differences between the TME of pituitary adenomas and refractory pituitary adenomas as well as the changes in the biological behavior of pituitary adenomas that may be caused by the microenvironment. These changes greatly affect the outcome of patients.


Subject(s)
Adenoma , Pituitary Neoplasms , Tumor Microenvironment , Pituitary Neoplasms/therapy , Pituitary Neoplasms/pathology , Humans , Tumor Microenvironment/physiology , Tumor Microenvironment/immunology , Adenoma/therapy , Adenoma/pathology , Animals , Treatment Outcome
2.
Mol Plant Microbe Interact ; 37(4): 407-415, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38171376

ABSTRACT

Mitochondria are highly dynamic organelles that constantly change their morphology to adapt to the cellular environment through fission and fusion, which is critical for a cell to maintain normal cellular functions. Despite the significance of this process in the development and pathogenicity of the rice blast fungus Magnaporthe oryzae, the underlying mechanism remains largely elusive. Here, we identified and characterized a mitochondrial outer membrane translocase, MoTom20, in M. oryzae. Targeted gene deletion revealed that MoTom20 plays an important role in vegetative growth, conidiogenesis, penetration, and infectious growth of M. oryzae. The growth rate, conidial production, appressorium turgor, and pathogenicity are decreased in the ΔMotom20 mutant compared with the wild-type and complemented strains. Further analysis revealed that MoTom20 localizes in mitochondrion and plays a key role in regulating mitochondrial fission and fusion balance, which is critical for infectious growth. Finally, we found that MoTom20 is involved in fatty-acid utilization, and its yeast homolog ScTom20 is able to rescue the defects of ΔMotom20 in mitochondrial morphology and pathogenicity. Overall, our data demonstrate that MoTom20 is a key regulator for mitochondrial morphology maintenance, which is important for infectious growth of the rice blast fungus M. oryzae. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Fungal Proteins , Mitochondria , Oryza , Plant Diseases , Oryza/microbiology , Plant Diseases/microbiology , Fungal Proteins/metabolism , Fungal Proteins/genetics , Mitochondria/metabolism , Spores, Fungal/growth & development , Ascomycota/genetics , Ascomycota/pathogenicity , Gene Expression Regulation, Fungal , Mitochondrial Membranes/metabolism , Virulence , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Dynamics , Gene Deletion
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1081-1092, 2024 02.
Article in English | MEDLINE | ID: mdl-37589737

ABSTRACT

We aimed to assess the efficacy of eplerenone, a steroidal mineralocorticoid receptor antagonist known to reduce blood pressure and mitigate cardiovascular disease (CVD) progression, in retarding the progression of chronic kidney disease (CKD) and CVD in a rat model of type 4 cardiorenal syndrome (CRS). We grouped rats into four experimental categories: sham surgery, sham treatment with eplerenone, nephrectomy without eplerenone (Nx), and nephrectomy with eplerenone (Nx + EP). For the Nx + EP group, rats received five-sixths nephrectomy, inducing CKD and CVD conditions such as renal hypertension and hyperglycemia, and were then treated with eplerenone (100 mg/kg/day, orally) over 4 weeks after an initial 4-week observation period. Heart rate, blood pressure, blood sugar levels, and sympathetic nerve excitation were monitored biweekly. In addition, assessments of renal and cardiac tissues, including evaluation of renal tubulointerstitial injury, glomerular injury, and cardiomyocyte hypertrophy, were conducted at week 8. Eplerenone administration mitigated CKD and CVD progression in the Nx + EP group, evident by improved blood pressure (217.3 ± 5.4 versus 175.3 ± 5.6), blood sugar (121.8 ± 1.3 versus 145.6 ± 6.0) level, reduced sympathetic nerve excitation, and cardiomyocyte hypertrophy compared to the Nx group. However, renal tubulointerstitial injury, glomerular injury, and cardiovascular dysfunction, which were increased in rats with type 4 CRS, did not show significant changes with eplerenone treatment. Our study demonstrated that eplerenone treatment did not exacerbate type 4 CRS but improved blood pressure, blood sugar levels, sympathetic nerve excitation, and cardiomyocyte hypertrophy in this model.


Subject(s)
Cardio-Renal Syndrome , Hyperglycemia , Renal Insufficiency, Chronic , Rats , Animals , Eplerenone/pharmacology , Cardio-Renal Syndrome/drug therapy , Kidney , Nephrectomy , Hypertrophy , Hyperglycemia/drug therapy
4.
Vaccines (Basel) ; 11(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38140181

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is one of the leading pathogens that cause devastating economic losses to the poultry industry. Type I fimbriae are essential adhesion factors of APEC, which can be targeted and developed as a vaccine candidate against multiple APEC serogroups due to their excellent immunogenicity and high homology. In this study, the recombinant strain SG102 was developed by expressing the APEC type I fimbriae gene cluster (fim) on the cell surface of an avirulent Salmonella gallinarum (S. gallinarum) vector strain using a chromosome-plasmid-balanced lethal system. The expression of APEC type I fimbriae was verified by erythrocyte hemagglutination assays and antigen-antibody agglutination tests. In vitro, the level of the SG102 strain adhering to leghorn male hepatoma (LMH) cells was significantly higher than that of the empty plasmid control strain, SG101. At two weeks after oral immunization, the SG102 strain remained detectable in the livers, spleens, and ceca of SG102-immunized chickens, while the SG101 strain was eliminated in SG101-immunized chickens. At 14 days after the secondary immunization with 5 × 109 CFU of the SG102 strain orally, highly antigen-specific humoral and mucosal immune responses against APEC type I fimbriae protein were detected in SG102-immunized chickens, with IgG and secretory IgA (sIgA) concentrations of 221.50 µg/mL and 1.68 µg/mL, respectively. The survival rates of SG102-immunized chickens were 65% (13/20) and 60% (12/20) after challenge with 50 LD50 doses of APEC virulent strains O78 and O161 serogroups, respectively. By contrast, 95% (19/20) and 100% (20/20) of SG101-immunized chickens died in challenge studies involving APEC O78 and O161 infections, respectively. In addition, the SG102 strain effectively provided protection against lethal challenges from the virulent S. gallinarum strain. These results demonstrate that the SG102 strain, which expresses APEC type I fimbriae, is a promising vaccine candidate against APEC O78 and O161 serogroups as well as S. gallinarum infections.

5.
Chin J Physiol ; 66(5): 306-312, 2023.
Article in English | MEDLINE | ID: mdl-37929341

ABSTRACT

Acute cardiomyopathy is a significant global health concern and one of the leading causes of death in developed countries. Prior studies have shown an association between acute cardiomyopathy and low vitamin D levels. Although paricalcitol, a vitamin D receptor (VDR) activator, has demonstrated clinical benefits in patients with advanced kidney disease, its effect on cardiac remodeling in cardiomyopathy is unknown. This study aimed to investigate the relative effects of paricalcitol on cardiomyopathy in rats. Wistar-Kyoto rats were administered vehicle (sham control group) or isoproterenol to induce cardiomyopathy. Rats administered isoproterenol were subsequently treated with paricalcitol (experimental group) or vehicle (isoproterenol group). Picrosirius red and immunofluorescence staining were used to analyze cardiac fibrosis and hypertrophy. Immunohistochemistry staining was used to confirm the molecular mechanisms involved in isoproterenol-induced cardiomyopathy in rats. Injection of paricalcitol could reduce collagen and transforming growth factor-beta 1 (TGF-ß1) levels while activating fibroblast growth factor receptor 1 (FGFR1) and fibroblast growth factor-23 (FGF23) without the help of Klotho, thereby reducing myocardial hypertrophy and fibrosis. As a VDR activator, paricalcitol reduces isoproterenol-induced cardiac fibrosis and hypertrophy by reducing the expression of TGF-ß1 and enhancing the expression of VDR, FGFR1, and FGF23.


Subject(s)
Cardiomyopathies , Transforming Growth Factor beta1 , Humans , Rats , Animals , Transforming Growth Factor beta1/metabolism , Up-Regulation , Isoproterenol/toxicity , Transforming Growth Factor beta/metabolism , Down-Regulation , Fibroblast Growth Factor-23 , Rats, Inbred WKY , Cardiomyopathies/chemically induced , Cardiomyopathies/drug therapy , Cardiomyopathies/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Fibrosis , Transforming Growth Factors/metabolism
6.
Nat Commun ; 14(1): 7251, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945555

ABSTRACT

Multidrug-resistant (MDR) bacteria cause severe clinical infections and a high mortality rate of over 40% in patients with immunodeficiencies. Therefore, more effective, broad-spectrum, and accurate treatment for severe cases of infection is urgently needed. Here, we present an adoptive transfer of macrophages loaded with a near-infrared photosensitizer (Lyso700D) in lysosomes to boost innate immunity and capture and eliminate bacteria through a photodynamic effect. In this design, the macrophages can track and capture bacteria into the lysosomes through innate immunity, thereby delivering the photosensitizer to the bacteria within a single lysosome, maximizing the photodynamic effect and minimizing the side effects. Our results demonstrate that this therapeutic strategy eliminated MDR Staphylococcus aureus (MRSA) and Acinetobacter baumannii (AB) efficiently and cured infected mice in both two models with 100% survival compared to 10% in the control groups. Promisingly, in a rat model of central nervous system bacterial infection, we performed the therapy using bone marrow-divided macrophages and implanted glass fiber to conduct light irradiation through the lumbar cistern. 100% of infected rats survived while none of the control group survived. Our work proposes an efaficient and safe strategy to cure MDR bacterial infections, which may benefit the future clinical treatment of infection.


Subject(s)
Acinetobacter baumannii , Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Staphylococcal Infections , Humans , Rats , Mice , Animals , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Staphylococcal Infections/drug therapy , Staphylococcus aureus , Bacteria , Macrophages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial
7.
Genome Res ; 33(8): 1369-1380, 2023 08.
Article in English | MEDLINE | ID: mdl-37714712

ABSTRACT

An intricate network of cis- and trans-elements acts on RNA N 6-methyladenosine (m6A), which in turn may affect gene expression and, ultimately, human health. A complete understanding of this network requires new approaches to accurately measure the subtle m6A differences arising from genetic variants, many of which have been associated with common diseases. To address this gap, we developed a method to accurately and sensitively detect transcriptome-wide allele-specific m6A (ASm6A) from MeRIP-seq data and applied it to uncover 12,056 high-confidence ASm6A modifications from 25 human tissues. We also identified 1184 putative functional variants for ASm6A regulation, a subset of which we experimentally validated. Importantly, we found that many of these ASm6A-associated genetic variants were enriched for common disease-associated and complex trait-associated risk loci, and verified that two disease risk variants can change m6A modification status. Together, this work provides a tool to detangle the dynamic network of RNA modifications at the allelic level and highlights the interplay of m6A and genetics in human health and disease.


Subject(s)
RNA , Transcriptome , Humans , RNA/genetics , RNA/metabolism , Alleles
8.
Int J Gen Med ; 16: 3677-3687, 2023.
Article in English | MEDLINE | ID: mdl-37637707

ABSTRACT

Objective: This study aimed to investigate the pathological effects of long-term postoperative endocrine medication on the endometrium in breast cancer patients. Methods: Data of 99 patients with primary breast cancer who underwent hysteroscopy and obtained endometrial biopsy from 1 June 2018 to 31 December 2021 at the Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital were prospectively collected. Results: Hysteroscopy was performed followed by endometrial histopathological examination in 99 breast cancer patients, including 44 taking tamoxifen (TAM), 26 taking other endocrine drugs, and 29 not taking endocrine drugs. The endometrial thickness in the TAM group was significantly higher than that in the other endocrine drug groups and the group not taking endocrine drugs (p=0.017). The receiver operating characteristic curves for the abnormal premenopausal endometrial thickening were plotted in this study; an endometrial thickness of 15.5 mm seen on ultrasound could be used as the most accurate ultrasound diagnostic threshold for the diagnosis of abnormal premenopausal endometrial hyperplasia, with an area under the curve of 0.888 (95% CI: 0.716, 1.000), a sensitivity of 100%, and a specificity of 75%, which was consistent with the results of our previous retrospective study. An endometrial thickness of ≥5 mm in postmenopausal women with breast cancer taking TAM was still used as the cut-off value for routine ultrasound diagnosis of abnormal postmenopausal endometrial hyperplasia. Conclusion: An ultrasound endometrial thickness (proliferative phase) of >15 mm in premenopausal patients can be used as the most accurate ultrasound diagnostic threshold for the diagnosis of abnormal endometrial hyperplasia. After menopause, an ultrasound endometrial thickness of ≥5 mm is still used as the criterion for diagnosing abnormal endometrial hyperplasia. Older patients should be monitored for signs of vaginal bleeding and fluid discharge, and hysteroscopy should be performed if necessary to ascertain the endometrial condition.

9.
Cells ; 12(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37371111

ABSTRACT

Serum and glucocorticoid-regulated kinase 1 (SGK1) is expressed in neuronal cells and involved in the pathogenesis of hypertension and metabolic syndrome, regulation of neuronal function, and depression in the brain. This study aims to identify the cellular mechanisms and signaling pathways of SGK1 in neuronal cells. In this study, the SGK1 inhibitor GSK650394 is used to suppress SGK1 expression in PC12 cells using an in vitro neuroscience research platform. Comparative transcriptomic analysis was performed to investigate the effects of SGK1 inhibition in nervous cells using mRNA sequencing (RNA-seq), differentially expressed genes (DEGs), and gene enrichment analysis. In total, 12,627 genes were identified, including 675 and 2152 DEGs at 48 and 72 h after treatment with GSK650394 in PC12 cells, respectively. Gene enrichment analysis data indicated that SGK1 inhibition-induced DEGs were enriched in 94 and 173 genes associated with vascular development and functional regulation and were validated using real-time PCR, Western blotting, and GEPIA2. Therefore, this study uses RNA-seq, DEG analysis, and GEPIA2 correlation analysis to identify positive candidate genes and signaling pathways regulated by SGK1 in rat nervous cells, which will enable further exploration of the underlying molecular signaling mechanisms of SGK1 and provide new insights into neuromodulation in cardiovascular diseases.


Subject(s)
Protein Serine-Threonine Kinases , Signal Transduction , Animals , Rats , Benzoates/pharmacology , PC12 Cells , Protein Serine-Threonine Kinases/metabolism
11.
Front Syst Neurosci ; 17: 1185752, 2023.
Article in English | MEDLINE | ID: mdl-37234065

ABSTRACT

The cerebellum operates exploiting a complex modular organization and a unified computational algorithm adapted to different behavioral contexts. Recent observations suggest that the cerebellum is involved not just in motor but also in emotional and cognitive processing. It is therefore critical to identify the specific regional connectivity and microcircuit properties of the emotional cerebellum. Recent studies are highlighting the differential regional localization of genes, molecules, and synaptic mechanisms and microcircuit wiring. However, the impact of these regional differences is not fully understood and will require experimental investigation and computational modeling. This review focuses on the cellular and circuit underpinnings of the cerebellar role in emotion. And since emotion involves an integration of cognitive, somatomotor, and autonomic activity, we elaborate on the tradeoff between segregation and distribution of these three main functions in the cerebellum.

12.
Theor Appl Genet ; 136(5): 111, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37052704

ABSTRACT

KEY MESSAGE: A mutation of CsARC6 not only causes white fruit color in cucumber, but also affects plant growth and fruit quality. Fruit color of cucumber is a very important agronomic trait, but most of the genes affecting cucumber white fruit color are still unknow, and no further studies were reported on the effect of cucumber fruit quality caused by white fruit color genes. Here, we obtained a white fruit mutant em41 in cucumber by EMS mutagenesis. The mutant gene was mapped to a 548 kb region of chromosome 2. Through mutation site analysis, it was found to be a null allele of CsARC6 (CsaV3_2G029290). The Csarc6 mutant has a typical phenotype of arc6 mutant that mesophyll cells contained only one or two giant chloroplasts. ARC6 protein was not detected in em41, and the level of FtsZ1 and FtsZ2 was also reduced. In addition, FtsZ2 could not form FtsZ ring-like structures in em41. Although these are typical arc6 mutant phenotypes, some special phenotypes occur in Csarc6 mutant, such as dwarfness with shortened internodes, enlarged fruit epidermal cells, decreased carotenoid contents, smaller fruits, and increased fruit nutrient contents. This study discovered a new gene, CsARC6, which not only controls the white fruit color, but also affects plant growth and fruit quality in cucumber.


Subject(s)
Cucumis sativus , Cucumis sativus/genetics , Cucumis sativus/metabolism , Fruit/genetics , Fruit/metabolism , Mutation , Chloroplasts/metabolism , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Plant Commun ; 4(4): 100561, 2023 07 10.
Article in English | MEDLINE | ID: mdl-36774535

ABSTRACT

Fatty acid ß-oxidation is critical for fatty acid degradation and cellular development. In the rice blast fungus Magnaporthe oryzae, fatty acid ß-oxidation is reported to be important mainly for turgor generation in the appressorium. However, the role of fatty acid ß-oxidation during invasive hyphal growth is rarely documented. We demonstrated that blocking peroxisomal fatty acid ß-oxidation impaired lipid droplet (LD) degradation and infectious growth of M. oryzae. We found that the key regulator of pathogenesis, MoMsn2, which we identified previously, is involved in fatty acid ß-oxidation by targeting MoDCI1 (encoding dienoyl-coenzyme A [CoA] isomerase), which is also important for LD degradation and infectious growth. Cytological observations revealed that MoMsn2 accumulated from the cytosol to the nucleus during early infection or upon treatment with oleate. We determined that the low-density lipoprotein receptor-related protein MoLrp1, which is also involved in fatty acid ß-oxidation and infectious growth, plays a critical role in the accumulation of MoMsn2 from the cytosol to the nucleus by activating the cyclic AMP signaling pathway. Our results provide new insights into the importance of fatty acid oxidation during invasive hyphal growth, which is modulated by MoMsn2 and its related signaling pathways in M. oryzae.


Subject(s)
Fungal Proteins , Magnaporthe , Fungal Proteins/genetics , Fungal Proteins/metabolism , Magnaporthe/metabolism , Signal Transduction , Fatty Acids/metabolism
14.
Carbohydr Polym ; 304: 120450, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36641182

ABSTRACT

Various cutaneous wounds are easily infected with external bacteria, which might result in a chronic wound and ongoing consequences. However, the appropriate development of biomaterials for the controllable delivery of antibacterial silver (Ag) and the simultaneous enhancement of mechanical adhesiveness remains an urgent challenge. Herein, we proposed a double network (DN) hydrogel dressings based on a covalent network of polyethylene glycol diacrylate (PEGDA) and a coordination network between catechol-modified hyaluronic acid (C-HA) and Ag-doped mesoporous silica nanoparticle (AMSN) for promoting the bacterial-infected full-thickness skin wound regeneration. This distinctive dual cross-linked structure of PEGDA/C-HA-AMSN significantly improved physicochemical properties, including gelation time, mechanical performance, and tissue adhesion strength. Importantly, PEGDA/C-HA-AMSN served as a hydrogel dressing that can respond to the acidic environment of bacterial-infected wounds leading to the controllable and optimized delivery of Ag, enabling the durable antibacterial activity accompanied by favorable cytocompatibility and angiogenesis capability. Further in vivo studies validated the higher efficacy of hydrogel dressings in treating wound healing by the synergistic antibacterial, anti-inflammatory, and pro-vascular strategies, meaning the prominent potential of the prepared dressings for overcoming the concerns of wound theranostics.


Subject(s)
Hydrogels , Nanoparticles , Hydrogels/pharmacology , Hydrogels/chemistry , Hyaluronic Acid/chemistry , Silver/pharmacology , Wound Healing , Bandages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Polyethylene Glycols
15.
Cereb Cortex ; 33(7): 3773-3786, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35989309

ABSTRACT

Humans often need to deal with various forms of information conflicts that arise when they receive inconsistent information. However, it remains unclear how we resolve them and whether the brain may recruit similar or distinct brain mechanisms to process different domains (e.g. social vs. nonsocial) of conflicts. To address this, we used functional magnetic resonance imaging and scanned 50 healthy participants when they were asked to perform 2 Stroop tasks with different forms of conflicts: social (i.e. face-gender incongruency) and nonsocial (i.e. color-word incongruency) conflicts. Neuroimaging results revealed that the ventral lateral prefrontal cortex was generally activated in processing incongruent versus congruent stimuli regardless of the task type, serving as a common mechanism for conflict resolving across domains. Notably, trial-based and model-based results jointly demonstrated that the dorsal and rostral medial prefrontal cortices were uniquely engaged in processing social incongruent stimuli, suggesting distinct neural substrates of social conflict resolving and adaptation. The findings uncover that the common but unique brain mechanisms are recruited when humans resolve and adapt to social conflicts.


Subject(s)
Brain Mapping , Conflict, Psychological , Humans , Brain/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Magnetic Resonance Imaging , Stroop Test , Reaction Time
16.
Environ Int ; 169: 107535, 2022 11.
Article in English | MEDLINE | ID: mdl-36152360

ABSTRACT

Liquid crystal monomers (LCMs) are widely used chemicals and ubiquitous emerging organic pollutants in the environment, some of which have persistent, bio-accumulative, and toxic potentials. Elevated levels of LCMs have been found in the e-waste dismantling associated areas. However, information on their internal exposure bio-monitoring is scarce. For the first time, occurrences of LCMs were observed in the serum samples of occupational workers (n = 85) from an e-waste dismantling area in South China. Twenty-nine LCMs were detected in serum samples of the workers, with a median value of 35.2 ng/mL (range: 7.78-276 ng/mL). Eight noticed LCMs were found to have relatively high detection frequencies ranging from 52.9% to 96.5%. The correlation analysis of individual LCMs indicated potential common applications and similar sources to the LCMs in occupational workers. Fluorinated LCMs were identified as the predominant monomers in the workers. Additionally, the estimated daily intake of the LCMs in the occupational workers was significantly higher than those in residents from the reference areas (p < 0.05, Mann-Whitney U Test, median values: 1.46 ng/kg bw/day versus 0.40 ng/kg bw/day), indicating a substantially higher exposure level to e-waste dismantling workers.


Subject(s)
Electronic Waste , Environmental Pollutants , Liquid Crystals , China , Environmental Monitoring , Humans
17.
Materials (Basel) ; 15(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806574

ABSTRACT

The medium carbon-medium alloy steel was developed for the manufacture of large ball mill liners and sports equipment. In this study, the continuous cooling transformation curve of a novel type of medium carbon-medium alloy steel was measured with a thermal simulation machine; based on this curve, the hardening and tempering processes were optimized. The steel was then complex modified with alkaline earth and rare earth alloys. The mechanical properties of the treated steel were tested. The microstructure of the steel was analyzed by metallographic microscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the wear surface of the steel was analyzed by a three-dimensional morphometer. After high-temperature tempering, the microstructure transformed into tempered sorbite, which possesses good mechanical properties and can adapt to working conditions that require high strength and toughness. Rare earth or alkaline earth modification of the medium carbon-medium alloy steel promoted microstructural uniformity and grain refinement and improved the mechanical and anti-wear properties.

18.
Int J Mol Sci ; 23(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743118

ABSTRACT

The formation and development of legumes nodules requires a lot of energy. Legumes must strictly control the number and activity of nodules to ensure efficient energy distribution. The AON system can limit the number of rhizobia infections and nodule numbers through the systemic signal pathway network that the aboveground and belowground parts participate in together. It can also promote the formation of nodules when plants are deficient in nitrogen. The currently known AON pathway includes four parts: soil NO3- signal and Rhizobium signal recognition and transmission, CLE-SUNN is the negative regulation pathway, CEP-CRA2 is the positive regulation pathway and the miR2111/TML module regulates nodule formation and development. In order to ensure the biological function of this important approach, plants use a variety of plant hormones, polypeptides, receptor kinases, transcription factors and miRNAs for signal transmission and transcriptional regulation. This review summarizes and discusses the research progress of the AON pathway in Legume nodule development.


Subject(s)
Fabaceae , Rhizobium , Self-Control , Fabaceae/genetics , Fabaceae/metabolism , Gene Expression Regulation, Plant , Homeostasis , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation/genetics , Rhizobium/metabolism , Root Nodules, Plant/metabolism , Symbiosis/physiology
19.
BMC Genomics ; 23(1): 383, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35590237

ABSTRACT

BACKGROUND: Cucumber is an important melon crop in the world, with different pericarp colors. However, the candidate genes and the underlying genetic mechanism for such an important trait in cucumber are unknown. In this study, a locus controlling pericarp color was found on chromosome 3 of cucumber genome. RESULTS: In this study, the light green inbred line G35 and the dark green inbred line Q51 were crossed to produce one F2 population. Consequently, we identified a major locus CsPC1 (Pericarp color 1). Next, we mapped the CsPC1 locus to a 94-kb region chromosome 3 which contains 15 genes. Among these genes, Csa3G912920, which encodes a GATA transcription factor, was expressed at a higher level in the pericarp of the NIL-1334 line (with light-green pericarp) than in that of the NIL-1325 line (with dark-green pericarp). This study provides a new allele for the improvement of cucumber pericarp color. CONCLUSION: A major QTL that controls pericarp color in cucumber, CsPC1, was identified in a 94-kb region that harbors the strong candidate gene CsGATA1.


Subject(s)
Cucumis sativus , Chromosome Mapping , Cucumis sativus/genetics , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
20.
Environ Int ; 164: 107295, 2022 06.
Article in English | MEDLINE | ID: mdl-35580435

ABSTRACT

Liquid crystal monomers (LCMs) are a class of emerging, persistent, bioaccumulative, and toxic organic pollutants. They are detected in various environmental matrixes that are associated with electronic waste (e-waste) dismantling. However, their occurrence and distribution in indoor and outdoor dust on a national scale remain unknown. In this study, a dedicated target analysis quantified a broad range of 60 LCMs in dust samples collected across China. The LCMs were frequently detected in indoor (n = 48) and outdoor dust (n = 97; 37 sampled concomitantly with indoors dust) from dwellings, and indoor dust from cybercafés (n = 34) and phone repair stores (n = 22), with median concentrations of 41.6, 94.7, 106, and 171 ng/g, respectively. No significant spatial difference was observed for the concentrations of the total LCMs among distinct geographical regions (p > 0.05). The median daily intake values of the total LCMs via dust ingestion, dermal contact, and inhalation were estimated at 1.50 × 10-2, 2.90 × 10-2, and 8.57 × 10-6 ng/kg BW/day for adults and 1.47 × 10-1, 1.22 × 10-1, and 2.18 × 10-5 ng/kg BW/day for children, respectively. These estimates suggested higher exposure risks for children and indicated that dust ingestion and dermal contact significantly contribute to the human intake of LCMs. The microenvironmental pollution levels of LCMs together with the potential exposure risks associated with some of these chemicals are of concern for human health.


Subject(s)
Air Pollution, Indoor , Electronic Waste , Environmental Pollutants , Liquid Crystals , Adult , Air Pollution, Indoor/analysis , Child , China , Dust/analysis , Electronic Waste/analysis , Environmental Exposure/analysis , Environmental Pollutants/analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...