Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Discov ; 8(1): 128, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36443312

ABSTRACT

Brain calcification is a critical aging-associated pathology and can cause multifaceted neurological symptoms. Cerebral phosphate homeostasis dysregulation, blood-brain barrier defects, and immune dysregulation have been implicated as major pathological processes in familial brain calcification (FBC). Here, we analyzed two brain calcification families and identified calcification co-segregated biallelic variants in the CMPK2 gene that disrupt mitochondrial functions. Transcriptome analysis of peripheral blood mononuclear cells (PBMCs) isolated from these patients showed impaired mitochondria-associated metabolism pathways. In situ hybridization and single-cell RNA sequencing revealed robust Cmpk2 expression in neurons and vascular endothelial cells (vECs), two cell types with high energy expenditure in the brain. The neurons in Cmpk2-knockout (KO) mice have fewer mitochondrial DNA copies, down-regulated mitochondrial proteins, reduced ATP production, and elevated intracellular inorganic phosphate (Pi) level, recapitulating the mitochondrial dysfunction observed in the PBMCs isolated from the FBC patients. Morphologically, the cristae architecture of the Cmpk2-KO murine neurons was also impaired. Notably, calcification developed in a progressive manner in the homozygous Cmpk2-KO mice thalamus region as well as in the Cmpk2-knock-in mice bearing the patient mutation, thus phenocopying the calcification pathology observed in the patients. Together, our study identifies biallelic variants of CMPK2 as novel genetic factors for FBC; and demonstrates how CMPK2 deficiency alters mitochondrial structures and functions, thereby highlighting the mitochondria dysregulation as a critical pathogenic mechanism underlying brain calcification.

3.
Front Genet ; 12: 732389, 2021.
Article in English | MEDLINE | ID: mdl-34745211

ABSTRACT

Primary familial brain calcification (PFBC) is a progressive neurological disorder manifesting as bilateral brain calcifications in CT scan with symptoms as parkinsonism, dystonia, ataxia, psychiatric symptoms, etc. Recently, pathogenic variants in MYORG have been linked to autosomal recessive PFBC. This study aims to elucidate the mutational and clinical spectrum of MYORG mutations in a large cohort of Chinese PFBC patients with possible autosomal recessive or absent family history. Mutational analyses of MYORG were performed by Sanger sequencing in a cohort of 245 PFBC patients including 21 subjects from 10 families compatible with a possibly autosomal-recessive trait and 224 apparently sporadic cases. In-depth phenotyping and neuroimaging features were investigated in all patients with novel MYORG variants. Two nonsense variants (c.442C > T, p. Q148*; c.972C > A, p. Y324*) and two missense variants (c.1969G>C, p. G657R; c.2033C > G, p. P678R) of MYORG were identified in four sporadic PFBC patients, respectively. These four novel variants were absent in gnomAD, and their amino acid were highly conserved, suggesting these variants have a pathogenic impact. Patients with MYORG variants tend to display a homogeneous clinical spectrum, showing extensive brain calcification and parkinsonism, dysarthria, ataxia, or vertigo. Our findings supported the pathogenic role of MYORG variants in PFBC and identified two pathogenic variants (c.442C > T, c.972C > A), one likely pathogenic variant (c.2033C > G), and one variant of uncertain significance (c.1969G>C), further expanding the genetic and phenotypic spectrum of PFBC-MYORG.

4.
Ann Clin Transl Neurol ; 7(10): 1862-1869, 2020 10.
Article in English | MEDLINE | ID: mdl-32860341

ABSTRACT

OBJECTIVE: Recessive mutations in the CAPN1 gene have recently been identified in spastic paraplegia 76 (SPG76), a complex hereditary spastic paraplegia (HSP) that is combined with cerebellar ataxia, resulting in an ataxia-spasticity disease spectrum. This study aims to assess the influence of CAPN1 variants on the occurrence of SPG76 and identify factors potentially contributing to phenotypic heterogeneity. METHODS: We screened a cohort of 240 unrelated HSP families for variants in CAPN1 using high-throughput sequencing analysis. We described in detail the clinical and genetic features of the SPG76 patients in our cohort and summarized all reported cases. RESULTS: Six unreported CAPN1-associated families containing eight patients with or without cerebellar ataxia were found in our cohort of HSP cases. These patients carried three previously reported homozygous truncating mutations (p.V64Gfs* 103, c.759+1G>A, and p.R285* ), and three additional novel compound heterozygous missense mutations (p.R481Q, p.P498L, and p.R618W). Lower limbs spasticity, hyperreflexia, and Babinski signs developed in about 94% of patients, with ataxia developing in 63% of cases. In total, 33 pathogenic mutations were distributed along the three reported functional domains of calpain-1 protein, encoded by CAPN1, with no hotspot region. A comparison of gender distribution between the two groups indicated that female SPG76 patients were significantly more likely to present with complicated HSP than male patients (P = 0.015). INTERPRETATION: Our study supports the clinically heterogeneous inter- and intra-family variability of SPG76 patients, and demonstrates that gender and calpain-1 linker structure may contribute to clinical heterogeneity in SPG76 cases.


Subject(s)
Calpain/genetics , Cerebellar Ataxia/genetics , Mutation/genetics , Phenotype , Spastic Paraplegia, Hereditary/genetics , Ataxia/genetics , Female , Humans , Intellectual Disability/virology , Male , Muscle Spasticity/virology , Optic Atrophy/virology , Paraplegia/genetics , Pedigree , Spinocerebellar Ataxias/virology
5.
Clin Genet ; 96(1): 53-60, 2019 07.
Article in English | MEDLINE | ID: mdl-30891739

ABSTRACT

Primary familial brain calcification (PFBC) is a rare neurological disorder. Mutations in five genes (SLC20A2, PDGFRB, PDGFB, XPR1, and MYORG) have been linked to PFBC. Here, we used SYBR green-based real-time quantitative polymerase chain reaction (PCR) assay and denaturing high-performance liquid chromatography analysis to detect copy number variants (CNVs) in 20 unrelated patients with PFBC, negatively sequenced for the five known genes. We identified three deletions in SLC20A2, including a large de novo full gene deletion and two exonic deletions confined to exon 2 and exon 6, respectively. Subsequent linked-read whole-genome sequencing of the patient with the large deletion showed a 1.7 Mb heterozygous deletion which removed the entire coding regions of SLC20A2 as well as 21 other genes. In the family with a deletion of exon 6, a missense variant of uncertain significance (SLC20A2: p.E267Q) also co-segregated with the disease. Functional assay showed the deletion could result in significantly impaired phosphate transport, whereas the p.E267Q variant did not. Our results confirm that deletion in SLC20A2 is a causal mechanism for PFBC and highlight the importance of functional study for classifying a rare missense variant as (likely) pathogenic.


Subject(s)
Basal Ganglia Diseases/diagnosis , Basal Ganglia Diseases/genetics , Calcinosis/diagnosis , Calcinosis/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/genetics , Sequence Deletion , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Adolescent , Adult , Aged , Alleles , Child , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male , Microsatellite Repeats , Middle Aged , Pedigree , Phenotype , Sequence Analysis, DNA , Xenotropic and Polytropic Retrovirus Receptor , Young Adult
6.
J Mol Neurosci ; 65(2): 196-202, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29799103

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder caused by survival motor neuron (SMN) protein deficiency leading the loss of motor neurons in the anterior horns of the spinal cord and brainstem. More than 95% of SMA patients are attributed to the homozygous deletion of survival motor neuron 1 (SMN1) gene, and approximately 5% are caused by compound heterozygous with a SMN1 deletion and a subtle mutation. Here, we identified a rare variant c.835-5T>G in intron 6 of SMN1 in a patient affected with type I SMA. We analyzed the functional consequences of this mutation on mRNA splicing in vitro. After transfecting pCI-SMN1, pCI-SMN2, and pCI-SMN1 c.835-5T>G minigenes into HEK293, Neuro-2a, and SHSY5Y cells, reverse transcription polymerase chain reaction (RT-PCR) was performed to compare the splicing effects of these minigenes. Finally, we found that this mutation resulted in the skipping of exon 7 in SMN1, which confirmed the genetic diagnosis of SMA.


Subject(s)
Muscular Atrophy, Spinal/genetics , Mutation , Survival of Motor Neuron 1 Protein/genetics , Cell Line, Tumor , HEK293 Cells , Humans , Infant , Male , Muscular Atrophy, Spinal/pathology , RNA Splicing , Survival of Motor Neuron 1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...