Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 409
Filter
1.
Front Public Health ; 12: 1351568, 2024.
Article in English | MEDLINE | ID: mdl-38689767

ABSTRACT

Introduction: Physical and mental health problems among pilots affect their working state and impact flight safety. Although pilots' physical and mental health problems have become increasingly prominent, their health has not been taken seriously. This study aimed to clarify challenges and support needs related to psychological and physical health among pilots to inform development of a more scientific and comprehensive physical and mental health system for civil aviation pilots. Methods: This qualitative study recruited pilots from nine civil aviation companies. Focus group interviews via an online conference platform were conducted in August 2022. Colaizzi analysis was used to derive themes from the data and explore pilots' experiences, challenges, and support needs. Results: The main sub-themes capturing pilots' psychological and physical health challenges were: (1) imbalance between family life and work; (2) pressure from assessment and physical examination eligibility requirements; (3) pressure from worries about being infected with COVID-19; (4) nutrition deficiency during working hours; (5) changes in eating habits because of the COVID-19 pandemic; (6) sleep deprivation; (7) occupational diseases; (8) lack of support from the company in coping with stress; (9) pilots' yearly examination standards; (10) support with sports equipment; (11) respecting planned rest time; and (12) isolation periods. Discussion: The interviewed pilots experienced major psychological pressure from various sources, and their physical health condition was concerning. We offer several suggestions that could be addressed to improve pilots' physical and mental health. However, more research is needed to compare standard health measures for pilots around the world in order to improve their physical and mental health and contribute to overall aviation safety.


Subject(s)
COVID-19 , Focus Groups , Pilots , Qualitative Research , Humans , Male , Adult , COVID-19/psychology , COVID-19/epidemiology , Pilots/psychology , Middle Aged , Female , Mental Health , Health Status , Adaptation, Psychological , SARS-CoV-2 , Occupational Health
2.
Biomed Mater Eng ; 35(3): 265-278, 2024.
Article in English | MEDLINE | ID: mdl-38728179

ABSTRACT

BACKGROUND: Bone defects arising from diverse causes, such as traffic accidents, contemporary weapon usage, and bone-related disorders, present significant challenges in clinical treatment. Prolonged treatment cycles for bone defects can result in complications, impacting patients' overall quality of life. Efficient and timely repair of bone defects is thus a critical concern in clinical practice. OBJECTIVE: This study aims to assess the scientific progress and achievements of magnesium phosphate bone cement (MPC) as an artificial bone substitute material. Additionally, the research seeks to explore the future development path and clinical potential of MPC bone cement in addressing challenges associated with bone defects. METHODS: The study comprehensively reviews MPC's performance, encompassing e.g. mechanical properties, biocompatibility, porosity, adhesion and injectability. Various modifiers are also considered to broaden MPC's applications in bone tissue engineering, emphasizing drug-loading performance and antibacterial capabilities, which meet clinical diversification requirements. RESULTS: In comparison to alternatives such as autogenous bone transplantation, allograft, polymethyl methacrylate (PMMA), and calcium phosphate cement (CPC), MPC emerges as a promising solution for bone defects. It addresses limitations associated with these alternatives, such as immunological rejection and long-term harm to patients. MPC can control heat release during the curing process, exhibits superior mechanical strength, and has the capacity to stimulate new bone growth. CONCLUSION: MPC stands out as an artificial bone substitute with appropriate mechanical strength, rapid degradation, non-toxicity, and good biocompatibility, facilitating bone repair and regeneration. Modification agents can enhance its clinical versatility. Future research should delve into its mechanical properties and formulations, expanding clinical applications to create higher-performing and more medically valuable alternatives in bone defect repair.


Subject(s)
Bone Cements , Bone Substitutes , Magnesium Compounds , Phosphates , Bone Cements/chemistry , Bone Cements/therapeutic use , Humans , Phosphates/chemistry , Magnesium Compounds/chemistry , Magnesium Compounds/therapeutic use , Bone Substitutes/therapeutic use , Bone Substitutes/chemistry , Animals , Bone Regeneration/drug effects , Porosity , Materials Testing , Bone and Bones/drug effects
3.
Toxics ; 12(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38787089

ABSTRACT

Antibiotic contamination has become a global environmental issue of widespread concern, among which oxytetracycline contamination is very severe. In this study, earthworm (Eisenia fetida) was exposed to oxytetracycline to study its impact on the soil environment. The total protein (TP), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), glutathione S-transferase (GST), and glutathione peroxidase (GPX) oxidative stress indicators in earthworms were measured, and the integrated biomarker response (IBR) approach was used to evaluate the toxic effect of oxytetracycline on earthworms. A Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and a path analysis model were used to explore the physiological and metabolic processes of earthworms after stress occurs. The results showed that SOD, GPX, and GST play important roles in resisting oxytetracycline stress. In addition, stress injury showed a good dose-effect relationship, and long-term stress from pollutants resulted in the most serious damage to the head tissue of earthworms. These results provide a theoretical basis for understanding the toxic effect of oxytetracycline on soil animals, monitoring the pollution status of oxytetracycline in soil, and conducting ecological security risk assessment.

4.
Urol J ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38629197

ABSTRACT

PURPOSE: To establish a prediction model for repeated shockwave lithotripsy (SWL) efficacy to help choose an appropriate treatment plan for patients with a single failed lithotripsy, reducing their treatment burden. PATIENTS AND METHODS: The clinical records and imaging data of 304 patients who underwent repeat SWL for upper urinary tract calculi (UUTC) at the Urology Centre of Shiyan People's Hospital between April 2019 and April 2023 were retrospectively collected. This dataset was divided into training (N = 217; 146 males [67.3%] and 71 females [32.7%]) and validation (N = 87; 66 males [75.9%] and 21 females [24.1%]) sets. The overall predictive accuracy of the models was calculated separately for the training and validation.  Receiver operating characteristic (ROC) curves were plotted, and the area under the ROC curve (AUC) was calculated. The normalized importance of each independent variable (derived from the one-way analyses) in the input layer of the artificial neural network (ANN) model for the dependent variable (success or failure in repeat SWL) in the output layer was plotted as a bar chart. RESULTS: This study included 304 patients, of whom 154 (50.7%) underwent successful repeat SWL. Predictive models were constructed in the training set and assessed in the validation set. Fourteen influencing factors were selected as input variables to build an ANN model: age, alcohol, body mass index, sex, hydronephrosis, hematuria, mean stone density (MSD), skin-to-stone distance (SSD), stone heterogeneity index (SHI), stone volume (SV), stone retention time, smoking, stone location, and urinary irritation symptom. The model's AUC was 0.852 (95% confidence interval (CI): 0.8-0.9), and its predictive accuracy for stone clearance in the validation group was 83.3%. The order of importance of the independent variables was MSD > SV > SSD > stone retention time > SHI. CONCLUSION: Establishing an ANN model for repeated SWL of UUTC is crucial for optimizing patient care. This model will be pivotal in providing accurate treatment plans for patients with an initial unsuccessful SWL treatment. Moreover, it can significantly enhance the success rate of subsequent SWL treatments, ultimately alleviating patients' treatment burden.

5.
Ann Intern Med ; 177(4): 418-427, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560914

ABSTRACT

BACKGROUND: Elevated tuberculosis (TB) incidence rates have recently been reported for racial/ethnic minority populations in the United States. Tracking such disparities is important for assessing progress toward national health equity goals and implementing change. OBJECTIVE: To quantify trends in racial/ethnic disparities in TB incidence among U.S.-born persons. DESIGN: Time-series analysis of national TB registry data for 2011 to 2021. SETTING: United States. PARTICIPANTS: U.S.-born persons stratified by race/ethnicity. MEASUREMENTS: TB incidence rates, incidence rate differences, and incidence rate ratios compared with non-Hispanic White persons; excess TB cases (calculated from incidence rate differences); and the index of disparity. Analyses were stratified by sex and by attribution of TB disease to recent transmission and were adjusted for age, year, and state of residence. RESULTS: In analyses of TB incidence rates for each racial/ethnic population compared with non-Hispanic White persons, incidence rate ratios were as high as 14.2 (95% CI, 13.0 to 15.5) among American Indian or Alaska Native (AI/AN) females. Relative disparities were greater for females, younger persons, and TB attributed to recent transmission. Absolute disparities were greater for males. Excess TB cases in 2011 to 2021 represented 69% (CI, 66% to 71%) and 62% (CI, 60% to 64%) of total cases for females and males, respectively. No evidence was found to indicate that incidence rate ratios decreased over time, and most relative disparity measures showed small, statistically nonsignificant increases. LIMITATION: Analyses assumed complete TB case diagnosis and self-report of race/ethnicity and were not adjusted for medical comorbidities or social determinants of health. CONCLUSION: There are persistent disparities in TB incidence by race/ethnicity. Relative disparities were greater for AI/AN persons, females, and younger persons, and absolute disparities were greater for males. Eliminating these disparities could reduce overall TB incidence by more than 60% among the U.S.-born population. PRIMARY FUNDING SOURCE: Centers for Disease Control and Prevention.


Subject(s)
Ethnicity , Tuberculosis , United States/epidemiology , Humans , Incidence , Routinely Collected Health Data , Minority Groups , Population Surveillance , Tuberculosis/epidemiology , Tuberculosis/prevention & control
6.
Sci Rep ; 14(1): 7638, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561452

ABSTRACT

Hypomyelinating leukodystrophy (HLD) is a rare genetic heterogeneous disease that can affect myelin development in the central nervous system. This study aims to analyze the clinical phenotype and genetic function of a family with HLD-7 caused by POLR3A mutation. The proband (IV6) in this family mainly showed progressive cognitive decline, dentin dysplasia, and hypogonadotropic hypogonadism. Her three old brothers (IV1, IV2, and IV4) also had different degrees of ataxia, dystonia, or dysarthria besides the aforementioned manifestations. Their brain magnetic resonance imaging showed bilateral periventricular white matter atrophy, brain atrophy, and corpus callosum atrophy and thinning. The proband and her two living brothers (IV2 and IV4) were detected to carry a homozygous mutation of the POLR3A (NM_007055.4) gene c. 2300G > T (p.Cys767Phe), and her consanguineous married parents (III1 and III2) were p.Cys767Phe heterozygous carriers. In the constructed POLR3A wild-type and p.Cys767Phe mutant cells, it was seen that overexpression of wild-type POLR3A protein significantly enhanced Pol III transcription of 5S rRNA and tRNA Leu-CAA. However, although the mutant POLR3A protein overexpression was increased compared to the wild-type protein overexpression, it did not show the expected further enhancement of Pol III function. On the contrary, Pol III transcription function was frustrated (POLR3A, BC200, and tRNA Leu-CAA expression decreased), and MBP and 18S rRNA expressions were decreased. This study indicates that the POLR3A p.Cys767Phe variant caused increased expression of mutated POLR3A protein and abnormal expression of Pol III transcripts, and the mutant POLR3A protein function was abnormal.


Subject(s)
Hereditary Central Nervous System Demyelinating Diseases , Male , Female , Humans , Hereditary Central Nervous System Demyelinating Diseases/genetics , Mutation , Phenotype , Atrophy , RNA, Transfer , RNA Polymerase III/genetics , RNA Polymerase III/metabolism
7.
Sensors (Basel) ; 24(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38676240

ABSTRACT

Impulsive blind deconvolution (IBD) is a popular method to recover impulsive sources for bearing fault diagnosis. Its underpinnings are in the design of objective functions based on prior knowledge of impulsive sources and a transfer function to describe transmission path influences. However, popular objective functions cannot retain waveform impulsiveness and periodicity cyclostationarity simultaneously, and the single convolution operation of IBD methods is insufficient to describe transmission paths composed of multiple linear and nonlinear units. Inspired by the MaxPooling period modulation intensity (MPMI) and convolutional sparse learning (CSL), an adaptive multi-D-norm-driven sparse unfolding deconvolution network (AMD-SUDN) is proposed in this paper. The core strategy is that one target vector with simultaneous impulsiveness and cyclostationarity is constructed automatically through the MPMI; then, this vector is substituted into the multi D-norm to design objective functions. Moreover, an iterative soft threshold algorithm (ISTA) for the CSL model is derived, and its iterative steps are unfolded into one deconvolution network. The algorithm's performance and the hyperparameter configuration are investigated by a set of numerical simulations. Finally, the proposed AMD-SUDN is applied to detect the impulsive features of bearing faults. All comparative results verify that the proposed AMD-SUDN achieves a better deconvolution accuracy than state-of-the-art IBD methods.

8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 337-345, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645867

ABSTRACT

Objective: To screen for the key characteristic genes of the psoriasis vulgaris (PV) patients with different Traditional Chinese Medicine (TCM) syndromes, including blood-heat syndrome (BHS), blood stasis syndrome (BSS), and blood-dryness syndrome (BDS), through bioinformatics and machine learning and to provide a scientific basis for the clinical diagnosis and treatment of PV of different TCM syndrome types. Methods: The GSE192867 dataset was downloaded from Gene Expression Omnibus (GEO). The limma package was used to screen for the differentially expressed genes (DEGs) of PV, BHS, BSS, and BDS in PV patients and healthy populations. In addition, KEGG (Kyoto Encyclopedia of Genes and Genes) pathway enrichment analysis was performed. The DEGs associated with PV, BHS, BSS, and BDS were identified in the screening and were intersected separately to obtain differentially characterized genes. Out of two algorithms, the support vector machine (SVM) and random forest (RF), the one that produced the optimal performance was used to analyze the characteristic genes and the top 5 genes were identified as the key characteristic genes. The receiver operating characteristic (ROC) curves of the key characteristic genes were plotted by using the pROC package, the area under curve (AUC) was calculated, and the diagnostic performance was evaluated, accordingly. Results: The numbers of DEGs associated with PV, BHS, BSS, and BDS were 7699, 7291, 7654, and 6578, respectively. KEGG enrichment analysis was focused on Janus kinase (JAK)/signal transducer and activator of transcription (STAT), cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), apoptosis, and other pathways. A total of 13 key characteristic genes were identified in the screening by machine learning. Among the 13 key characteristic genes, malectin (MLEC), TUB like protein 3 (TULP3), SET domain containing 9 (SETD9), nuclear envelope integral membrane protein 2 (NEMP2), and BTG anti-proliferation factor 3 (BTG3) were the key characteristic genes of BHS; phosphatase 15 (DUSP15), C1q and tumor necrosis factor related protein 7 (C1QTNF7), solute carrier family 12 member 5 (SLC12A5), tripartite motif containing 63 (TRIM63), and ubiquitin associated protein 1 like (UBAP1L) were the key characteristic genes of BSS; recombinant mouse protein (RRNAD1), GTPase-activating protein ASAP3 Protein (ASAP3), and human myomesin 2 (MYOM2) were the key characteristic genes of BDS. Moreover, all of them showed high diagnostic efficacy. Conclusion: There are significant differences in the characteristic genes of different PV syndromes and they may be potential biomarkers for diagnosing TCM syndromes of PV.


Subject(s)
Computational Biology , Machine Learning , Medicine, Chinese Traditional , Psoriasis , Humans , Psoriasis/genetics , Psoriasis/diagnosis , Medicine, Chinese Traditional/methods , Computational Biology/methods , Gene Expression Profiling/methods , Support Vector Machine , Algorithms
9.
J Virol ; 98(5): e0031724, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38624231

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered swine coronavirus with potential cross-species transmission risk. Although SADS-CoV-induced host cell apoptosis and innate immunity antagonization has been revealed, underlying signaling pathways remain obscure. Here, we demonstrated that infection of SADS-CoV induced apoptosis in vivo and in vitro, and that viral protein NS7a is mainly responsible for SADS-CoV-induced apoptosis in host cells. Furthermore, we found that NS7a interacted with apoptosis-inducing factor mitochondria associated 1 (AIFM1) to activate caspase-3 via caspase-6 in SADS-CoV-infected cells, and enhanced SADS-CoV replication. Importantly, NS7a suppressed poly(I:C)-induced expression of type III interferon (IFN-λ) via activating caspase-3 to cleave interferon regulatory factor 3 (IRF3), and caspase-3 inhibitor protects piglets against SADS-CoV infection in vivo. These findings reveal how SADS-CoV induced apoptosis to inhibit innate immunity and provide a valuable clue to the development of effective drugs for the clinical control of SADS-CoV infection.IMPORTANCEOver the last 20 years, multiple animal-originated coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have caused millions of deaths, seriously jeopardized human health, and hindered social development, indicating that the study of animal-originated coronaviruses with potential for cross-species transmission is particularly important. Bat-originated swine acute diarrhea syndrome coronavirus (SADS-CoV), discovered in 2017, can not only cause fatal diarrhea in piglets, but also infect multiple human cells, with a potential risk of cross-species transmission, but its pathogenesis is unclear. In this study, we demonstrated that NS7a of SADS-CoV suppresses IFN-λ production via apoptosis-inducing factor mitochondria associated 1 (AIFM1)-caspase-6-caspase-3-interferon regulatory factor 3 (IRF3) pathway, and caspase-3 inhibitor (Z-DEVD-FMK) can effectively inhibit SADS-CoV replication and protect infected piglets. Our findings in this study contribute to a better understanding of SADS-CoV-host interactions as a part of the coronaviruses pathogenesis and using apoptosis-inhibitor as a drug as potential therapeutic approaches for prevention and control of SADS-CoV infection.


Subject(s)
Apoptosis , Immunity, Innate , Interferon Regulatory Factor-3 , Interferons , Viral Nonstructural Proteins , Animals , Swine , Humans , Interferons/metabolism , Interferon Regulatory Factor-3/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication , Interferon Lambda , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Alphacoronavirus/metabolism , Caspase 3/metabolism , Swine Diseases/virology , Swine Diseases/metabolism , Vero Cells , Signal Transduction , Chlorocebus aethiops , HEK293 Cells
10.
J Phys Chem Lett ; 15(18): 4890-4897, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38682878

ABSTRACT

Organic single crystals (OSCs) with uniform morphologies and highly ordered molecular aggregations are promising for high-performance optoelectronic devices, such as organic solid-state lasers (OSSLs), organic light-emitting transistors (OLETs), and organic light-emitting diodes (OLEDs). However, manipulating OSC morphologies and aggregation is challenging. In this study, we synthesized two-dimensional (2D) OSCs of 4,4'-bis[(N-carbazole)styryl]biphenyl (BSBCz) in hexagonal and parallelogram microplate (H-MP and P-MP) forms. Both types exhibit H-aggregation in the 2D plate plane but with different molecular transition dipole moment (TDM) orientations. This leads to different photon coupling modes with H-MP and P-MP microcavities. H-MPs enable isotropic 2D-waveguiding, forming whispering gallery mode (WGM) resonators, while P-MPs create unidirectional waveguiding, forming Fabry-Pérot mode (FP) resonators. These resonators can generate low-threshold laser emissions at 467 and 473 nm, respectively, and exhibit superior lasing stability with a half-life exceeding 2 h. Our BSBCz microplate OSCs are attractive candidates to combine controlled organic microcavities with photon transporting for realizing future integrated optoelectronic devices.

11.
Heliyon ; 10(5): e26637, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38444498

ABSTRACT

Hydrogen will play an indispensable role as both an energy vector and as a molecule in essential products in the transition to climate neutrality. However, the optimal sustainable hydrogen production system is not definitive due to challenges in energy conversion efficiency, economic cost, and associated marginal abatement cost. This review summarises and contrasts different sustainable hydrogen production technologies including for their development, potential for improvement, barriers to large-scale industrial application, capital and operating cost, and life-cycle environmental impact. Polymer electrolyte membrane water electrolysis technology shows significant potential for large-scale application in the near-term, with a higher technology readiness level (expected to be 9 by 2030) and a levelized cost of hydrogen expected to be 4.15-6 €/kg H2 in 2030; this equates to a 50% decrease as compared to 2020. The four-step copper-chlorine (Cu-Cl) water thermochemical cycle can perform better in terms of life cycle environmental impact than the three- and five-step Cu-Cl cycle, however, due to system complexity and high capital expenditure, the thermochemical cycle is more suitable for long-term application should the technology develop. Biological conversion technologies (such as photo/dark fermentation) are at a lower technology readiness level, and the system efficiency of some of these pathways such as biophotolysis is low (less than 10%). Biomass gasification may be a more mature technology than some biological conversion pathways owing to its higher system efficiency (40%-50%). Biological conversion systems also have higher costs and as such require significant development to be comparable to hydrogen produced via electrolysis.

12.
Adv Mater ; : e2311025, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427593

ABSTRACT

Perovskite solar cells (PSCs) have attracted widespread research and commercialization attention because of their high power conversion efficiency (PCE) and low fabrication cost. The long-term stability of PSCs should satisfy industrial requirements for photovoltaic devices. Inverted PSCs with a p-i-n architecture exhibit considerable advantages because of their excellent stability and competitive efficiency. The continuously broken-through PCE of inverted PSCs shows huge application potential. This review summarizes the developments and outlines the characteristics of inverted PSCs including charge transport layers (CTLs), perovskite compositions, and interfacial regulation strategies. The latest effective CTLs, interfacial modification, and stability promotion strategies especially under light, thermal, and bias conditions are emphatically analyzed. Furthermore, the applications of the inverted structure in high-efficiency and stable tandem, flexible photovoltaic devices, and modules and their main obstacles are systematically introduced. Finally, the remaining challenges faced by inverted devices are discussed, and several directions for advancing inverted PSCs are proposed according to their development status and industrialization requirements.

13.
Res Sq ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464117

ABSTRACT

Background: Neurofilament Light (NfL) is a biomarker for early neurodegeneration in Alzheimer's disease (AD). This study aims to examine the association between plasma NfL and multi-modal neuroimaging features across the AD spectrum and whether NfL predicts future tau deposition. Methods: The present study recruited 517 participants comprising Aß negative cognitively normal (CN-) participants (n = 135), CN + participants (n = 64), individuals with mild cognitive impairment (MCI) (n = 212), and those diagnosed with AD dementia (n = 106). All the participants underwent multi-modal neuroimaging examinations. Cross-sectional and longitudinal associations between plasma NfL and multi-modal neuro-imaging features were evaluated using partial correlation analysis and linear mixed effects models. We also used linear regression analysis to investigate the association of baseline plasma NfL with future PET tau load. Mediation analysis was used to explore whether the effect of NfL on cognition was mediated by these MRI markers. Results: The results showed that baseline NfL levels and the rate of change were associated with Aß deposition, brain atrophy, brain connectome, glucose metabolism, and brain perfusion in AD signature regions. In both Aß positive CN and MCI participants, baseline NfL showed a significant predictive value of elevating tau burden in the left medial orbitofrontal cortex and para-hippocampus. Lastly, the multi-modal neuroimaging features mediated the association between plasma NfL and cognitive performance. Conclusions: The study supports the association between plasma NfL and multi-modal neuroimaging features in AD-vulnerable regions and its predictive value for future tau deposition.

14.
J Anim Sci Biotechnol ; 15(1): 49, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500230

ABSTRACT

BACKGROUND: Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization. The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies. However, research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited. This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization, the portal amino acid profile, and nutrient transporter expression in intestinal enterocytes in piglets. METHODS: Sixty-four barrows (15.00 ± 1.12 kg) were randomly allotted to 4 groups and fed diets formulated with starch from corn, corn/barley, corn/sorghum, or corn/cassava combinations (diets were coded A, B, C, or D respectively). Protein retention, the concentrations of portal amino acid and glucose, and the relative expression of amino acid and glucose transporter mRNAs were investigated. In vitro digestion was used to compare the dietary glucose release profiles. RESULTS: Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources. The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics. Total nitrogen excretion was reduced in the piglets in group B, while apparent nitrogen digestibility and nitrogen retention increased (P < 0.05). Regardless of the time (2 h or 4 h after morning feeding), the portal total free amino acids content and contents of some individual amino acids (Thr, Glu, Gly, Ala, and Ile) of the piglets in group B were significantly higher than those in groups A, C, and D (P < 0.05). Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets, which decreased gradually with the extension of feeding time. The portal His/Phe, Pro/Glu, Leu/Val, Lys/Met, Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments. In the anterior jejunum, the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1, EAAC1, and CAT1. CONCLUSIONS: Rational allocation of starch resources could regulate dietary glucose release kinetics. In the present study, group B (corn/barley) diet exhibited a better glucose release kinetic pattern than the other groups, which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine, thereby promoting nitrogen deposition in the body, and improving the utilization efficiency of dietary nitrogen.

15.
Molecules ; 29(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542907

ABSTRACT

Although laser technology brings convenience to production and daily life, it also causes high-energy damage. Therefore, there is an urgent need to develop optical limiting materials for laser protection. In this study, a novel nonlinear optical material, red/black phosphorus lateral heterojunction, is successfully prepared through solvothermal and ultrasonic treatment. Using the Z-scan method, the nonlinear optical properties of the red/black phosphorus heterojunction are determined at wavelengths of 532 and 1064 nm. These results indicate that the red/black phosphorus heterojunction exhibits reverse saturable absorption properties in 1.2.3-glycerol. Interestingly, the red/black phosphorus heterojunction shows an enhanced performance over red phosphorus by introducing the black phosphorus phase. Moreover, the red/black phosphorus heterojunction is doped into organically modified silicate gel glass with excellent broadband optical limiting performance. This study highlights the promising prospect of the red/black phosphorus heterojunction in the nonlinear optical and optical limiting fields.

16.
World J Clin Cases ; 12(7): 1320-1325, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38524521

ABSTRACT

BACKGROUND: Developmental dysplasia of the hip (DDH) is a common osteoarticular deformity in pediatric orthopedics. A patient with bilateral DDH was diagnosed and treated using our improved technique "(powerful overturning acetabuloplasty)" combined with femoral rotational shortening osteotomy. CASE SUMMARY: A 4-year-old girl who was diagnosed with bilateral DDH could not stand normally, and sought surgical treatment to solve the problem of double hip extension and standing. As this child had high dislocation of the hip joint and the acetabular index was high, we changed the traditional acetabuloplasty to "powerful turnover acetabuloplasty" combined with femoral rotation shortening osteotomy. During the short-term postoperative follow-up (1, 3, 6, 9, 12, and 15 months), the child had no discomfort in her lower limbs. After the braces and internal fixation plates were removed, formal rehabilitation training was actively carried out. CONCLUSION: Our "powerful overturning acetabuloplasty" combined with femoral rotational shortening osteotomy is feasible in the treatment of DDH in children. This technology may be widely used in the clinic.

17.
J Med Virol ; 96(3): e29531, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38515377

ABSTRACT

The Nucleocapsid Protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not only the core structural protein required for viral packaging, but also participates in the regulation of viral replication, and its post-translational modifications such as phosphorylation have been shown to be an important strategy for regulating virus proliferation. Our previous work identified NP could be ubiquitinated, as confirmed by two independent studies. But the function of NP ubiquitination is currently unknown. In this study, we first pinpointed TRIM6 as the E3 ubiquitin ligase responsible for NP ubiquitination, binding to NP's CTD via its RING and B-box-CCD domains. TRIM6 promotes the K29-typed polyubiquitination of NP at K102, K347, and K361 residues, increasing its binding to viral genomic RNA. Consistently, functional experiments such as the use of the reverse genetic tool trVLP model and gene knockout of TRIM6 further confirmed that blocking the ubiquitination of NP by TRIM6 significantly inhibited the proliferation of SARS-CoV-2. Notably, the NP of coronavirus is relatively conserved, and the NP of SARS-CoV can also be ubiquitinated by TRIM6, indicating that NP could be a broad-spectrum anti-coronavirus target. These findings shed light on the intricate interaction between SARS-CoV-2 and the host, potentially opening new opportunities for COVID-19 therapeutic development.


Subject(s)
COVID-19 , Genome, Viral , SARS-CoV-2 , Ubiquitin-Protein Ligases , Humans , Cell Proliferation , COVID-19/genetics , COVID-19/virology , Nucleocapsid Proteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism
18.
Brain Res Bull ; 209: 110918, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432497

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of high mortality and disability worldwide. Overactivation of astrocytes and overexpression of inflammatory responses in the injured brain are characteristic pathological features of TBI. Rosiglitazone (ROS) is a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist known for its anti-inflammatory activity. However, the relationship between the inflammatory response involved in ROS treatment and astrocyte A1 polarization remains unclear. OBJECTIVE: This study aimed to investigate whether ROS treatment improves dysfunction and astrocyte A1 polarization induced after TBI and to elucidate the underlying mechanisms of these functions. METHODS: SD rats were randomly divided into sham operation group, TBI group, TBI+ROS group, and TBI+ PPAR-γ antagonist group (GW9662 + TBI). The rat TBI injury model was prepared by the CCI method; brain water content test and wire grip test scores suggested the prognosis; FJB staining showed the changes of ROS on the morphology and number of neurons in the peripheral area of cortical injury; ELISA, immunofluorescence staining, and western blotting analysis revealed the effects of ROS on inflammatory response and astrocyte activation with the degree of A1 polarization after TBI. RESULTS: Brain water content, inflammatory factor expression, and astrocyte activation in the TBI group were higher than those in the sham-operated group (P < 0.05); compared with the TBI group, the expression of the above indexes in the ROS group was significantly lower (P < 0.05). Compared with the TBI group, PPAR-γ content was significantly higher and C3 content was considerably lower in the ROS group (P < 0.05); compared with the TBI group, PPAR-γ content was significantly lower and C3 content was substantially higher in the inhibitor group (P < 0.05). CONCLUSION: ROS can exert neuroprotective effects by inhibiting astrocyte A1 polarization through the PPAR-γ pathway based on the reduction of inflammatory factors and astrocyte activation in the brain after TBI.


Subject(s)
Astrocytes , Brain Injuries, Traumatic , Hypoglycemic Agents , Neuroinflammatory Diseases , Rosiglitazone , Animals , Rats , Astrocytes/drug effects , Astrocytes/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Neuroinflammatory Diseases/drug therapy , PPAR gamma/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male
19.
Clin Pharmacol Drug Dev ; 13(6): 665-671, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523487

ABSTRACT

Tozorakimab is a high-affinity human immunoglobulin G1 monoclonal antibody that neutralizes interleukin (IL)-33, an IL-1 family cytokine. This phase 1, single-center, randomized, double-blind, placebo-controlled, single ascending dose study (NCT05070312) evaluated tozorakimab in a healthy Chinese population. Outcomes included the characterization of the pharmacokinetic (PK) profile and immunogenicity of tozorakimab. Safety outcomes included treatment-emergent adverse events (TEAEs) and clinical laboratory, electrocardiogram, and vital sign parameters. Healthy, non-smoking, male, and female Chinese participants aged 18-45 years with a body mass index 19-24 kg/m2 were enrolled. In total, 36 participants across 2 cohorts of 18 participants were randomized 2:1 to receive a single subcutaneous dose of tozorakimab (300 mg [2 mL] or 600 mg [4 mL]) or matching placebo (2 or 4 mL). Tozorakimab showed dose-dependent serum PK concentrations with an approximate monophasic distribution in serum over time and a maximum observed peak concentration of 20.1 and 33.7 µg/mL in the 300- and 600-mg cohorts, respectively. No treatment-emergent anti-drug antibodies for tozorakimab were observed in any of the participants. There were no clinically relevant trends in the occurrence of TEAEs across the treatment groups. There were no clinically relevant trends over time in clinical laboratory (hematology, clinical chemistry, and urinalysis), electrocardiogram, or vital sign parameters in any treatment group. Overall, tozorakimab demonstrated dose-dependent systemic exposure in healthy Chinese participants and was well tolerated, with no safety concerns identified in this study.


Subject(s)
Antibodies, Monoclonal, Humanized , Asian People , Dose-Response Relationship, Drug , Healthy Volunteers , Humans , Double-Blind Method , Female , Male , Adult , Injections, Subcutaneous , Young Adult , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Middle Aged , Adolescent , China , East Asian People
20.
J Proteome Res ; 23(5): 1679-1688, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38546438

ABSTRACT

Previous metabolomics studies have highlighted the predictive value of metabolites on upper gastrointestinal (UGI) cancer, while most of them ignored the potential effects of lifestyle and genetic risk on plasma metabolites. This study aimed to evaluate the role of lifestyle and genetic risk in the metabolic mechanism of UGI cancer. Differential metabolites of UGI cancer were identified using partial least-squares discriminant analysis and the Wilcoxon test. Then, we calculated the healthy lifestyle index (HLI) score and polygenic risk score (PRS) and divided them into three groups, respectively. A total of 15 metabolites were identified as UGI-cancer-related differential metabolites. The metabolite model (AUC = 0.699) exhibited superior discrimination ability compared to those of the HLI model (AUC = 0.615) and the PRS model (AUC = 0.593). Moreover, subgroup analysis revealed that the metabolite model showed higher discrimination ability for individuals with unhealthy lifestyles compared to that with healthy individuals (AUC = 0.783 vs 0.684). Furthermore, in the genetic risk subgroup analysis, individuals with a genetic predisposition to UGI cancer exhibited the best discriminative performance in the metabolite model (AUC = 0.770). These findings demonstrated the clinical significance of metabolic biomarkers in UGI cancer discrimination, especially in individuals with unhealthy lifestyles and a high genetic risk.


Subject(s)
Gastrointestinal Neoplasms , Healthy Lifestyle , Humans , Male , Female , Middle Aged , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/blood , United Kingdom/epidemiology , Risk Factors , Genetic Predisposition to Disease , Biological Specimen Banks , Aged , Metabolomics/methods , Multifactorial Inheritance , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Genetic Risk Score , UK Biobank
SELECTION OF CITATIONS
SEARCH DETAIL
...