Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(29): 17740-17745, 2021 May 13.
Article in English | MEDLINE | ID: mdl-35480222

ABSTRACT

Despite remarkable progress in oil/water separation and wastewater treatment, the ability to carry out the two processes in a synchronous manner has remained difficult. Here, synchronous oil/water separation and wastewater treatment were proposed on mesh surfaces coated with copper-oxide particles, which possess superwetting and catalytic properties. The superwetting performance generates additional pressure to achieve the permselectivity of the designed mesh, on which the oil phase is selectively repelled while the water phase passes though easily. Moreover, the catalytic performance of the copper oxide forms reactive oxygen species to purify the water during oil/water separation process. We show that the oil/water separation and catalytic degradation efficiencies for organic pollutants can reach more than 99% by adjusting the content of copper oxide on the mesh surfaces. Such a unique design for integrating multifunctionality on single mesh surfaces strongly underpins the synchronization of oil/water separation and wastewater treatment, which will provide a new insight for separating pure water from industrial oil/water mixtures.

2.
ACS Appl Mater Interfaces ; 12(22): 25471-25477, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32379411

ABSTRACT

Slippery liquid-infused porous surfaces (SLIPSs) have recently been intensively investigated because of promising potential in various applications that require water repellency. However, the use of SLIPS is limited by its unsatisfactory oil-storage and -replacement capabilities. Here we designed network surface structures with interconnected microchannels and cross-linked nanosheets, which acted as natural oil reservoirs and vessels. A lubricant can be firmly locked and stored into the networks, leading to an efficient water repellency as well as improved mechanical durability and stability. We further show the surface structures can be applied to anti-icing/deicing, demonstrated by its improved icing-delaying, anti-icing, and deicing properties even after multiple cycles, compared to those on superhydrophobic surfaces (SHSs) and the conventional SLIPSs. We envision that this unique design of the slippery liquid-infused porous network surface (SLIPNS) with robust stability and durability may expand its application in extreme environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...