Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
2.
Environ Sci Technol ; 57(26): 9782-9792, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37343248

ABSTRACT

This study investigated the release of microplastics and nanoplastics from plastic containers and reusable food pouches under different usage scenarios, using DI water and 3% acetic acid as food simulants for aqueous foods and acidic foods. The results indicated that microwave heating caused the highest release of microplastics and nanoplastics into food compared to other usage scenarios, such as refrigeration or room-temperature storage. It was found that some containers could release as many as 4.22 million microplastic and 2.11 billion nanoplastic particles from only one square centimeter of plastic area within 3 min of microwave heating. Refrigeration and room-temperature storage for over six months can also release millions to billions of microplastics and nanoplastics. Additionally, the polyethylene-based food pouch released more particles than polypropylene-based plastic containers. Exposure modeling results suggested that the highest estimated daily intake was 20.3 ng/kg·day for infants drinking microwaved water and 22.1 ng/kg·day for toddlers consuming microwaved dairy products from polypropylene containers. Furthermore, an in vitro study conducted to assess the cell viability showed that the extracted microplastics and nanoplastics released from the plastic container can cause the death of 76.70 and 77.18% of human embryonic kidney cells (HEK293T) at 1000 µg/mL concentration after exposure of 48 and 72 h, respectively.


Subject(s)
Plastics , Water Pollutants, Chemical , Humans , Microplastics , Polypropylenes , HEK293 Cells , Water Pollutants, Chemical/analysis , Water
3.
Article in English | MEDLINE | ID: mdl-36834270

ABSTRACT

This study provides empirical evidence and policy inspiration for China to implement the energy use rights trading policy. Using 262 cities in China from 2005 to 2019 as samples, we employed the double difference method and mediation analysis to empirically measure the impact of energy use rights trading policy on environmental performance. First, energy use rights trading policy can improve urban environmental performance. This conclusion is valid as per the endogeneity test, parallel trend test, PSM-DID test, placebo test, and triple difference method. Second, heterogeneity analysis shows that the effect of the energy use rights trading policy on urban environmental performance will be different by the size of population. Energy use rights trading policy has the greatest effect on the environmental performance of resource-based cities. Meanwhile, compared to non-industrial base, the effect of the energy use rights trading policy on environmental performance is more pronounced in cities with older industrial base. Third, the mechanism test using the mediation effect model proved that the impact of energy use rights trading policy on environmental performance is achieved by improving the level of marketization and technological innovation.


Subject(s)
Industry , Humans , Carbon , China , Cities , Environmental Policy , Policy
4.
Water Res ; 233: 119745, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36812816

ABSTRACT

Groundwater is a crucial resource across agricultural, civil, and industrial sectors. The prediction of groundwater pollution due to various chemical components is vital for planning, policymaking, and management of groundwater resources. In the last two decades, the application of machine learning (ML) techniques for groundwater quality (GWQ) modeling has grown exponentially. This review assesses all supervised, semi-supervised, unsupervised, and ensemble ML models implemented to predict any groundwater quality parameter, making this the most extensive modern review on this topic. Neural networks are the most used ML model in GWQ modeling. Their usage has declined in recent years, giving rise to more accurate or advanced techniques such as deep learning or unsupervised algorithms. Iran and the United States lead the world in areas modeled, with a wealth of historical data available. Nitrate has been modeled most exhaustively, targeted by nearly half of all studies. Advancements in future work will be made with further implementation of deep learning and explainable artificial intelligence or other cutting-edge techniques, application of these techniques for sparsely studied variables, the modeling of new or unique study areas, and the implementation of ML techniques for groundwater quality management.


Subject(s)
Environmental Monitoring , Groundwater , Environmental Monitoring/methods , Artificial Intelligence , Neural Networks, Computer , Machine Learning
5.
Front Public Health ; 10: 1050971, 2022.
Article in English | MEDLINE | ID: mdl-36504993

ABSTRACT

Introduction: Air pollution not only harms people's health, but also impedes urban economic development. This study aims to analyze how air quality improvement affects enterprise productivity. And then from regional and time heterogeneities' aspects to investigate if the air quality improvement increase enterprise productivity. Methods: The data were obtained from China Industrial Enterprise Database and China Patent Database,and this study used Spatial Durbin Model to analyze how air quality improvement affects enterprise productivity. Results: The results show that: (1) air quality improvement and its spatial spillover effect can significantly increase enterprise productivity in adjacent areas. (2) After 2010, the government implemented more stringent measures to prevent and control air pollution, which made the air quality improvement promote enterprise productivity increase more obviously. The air quality improvement in eastern and central regions was less obvious than in western regions. (3) Air quality improvement can increase enterprise productivity by improving enterprise innovation quality, ensuring the health of urban residents, and increasing the stock of urban human capital. Conclusion: Air quality improvement and its spatial spillover effect can significantly increase enterprise productivity in adjacent areas. So this study puts forward some policy enlightenment, such as establishing an air pollution detection system, using an intelligent network supervision platform, and implementing a coordinated defense and governance system.


Subject(s)
Air Pollution , Quality Improvement , Humans , Cities , Economic Development , Industry
6.
Environ Sci Technol ; 56(12): 7873-7882, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35649150

ABSTRACT

Atrazine is one of the most prevalent herbicides that has been widely applied to agricultural lands in the U.S. Understanding the transport and accumulation of atrazine in the subsurface under future climate scenarios is essential for future agriculture and water management. Here, we predict atrazine transport and accumulation under an intensive corn production land based on 20 projected global climate model (GCM) realizations, while considering uncertainties of transport parameters. Our study predicted continuous groundwater table declination and atrazine mass accumulation on the study site. We show that atrazine mass accumulation in corn production areas is subject to total precipitation in the atrazine application season, whereas atrazine plume movement is controlled by the sequence of annual precipitation. Atrazine mass transport and accumulation are more sensitive to climate variation on the field sites with low sorption and atrazine degradation rate. Under the extreme condition, the atrazine plume can migrate as far as five meters from the ground surface in only three years. While annual mean precipitation in the Midwestern U.S. is projected to increase in the future, groundwater vulnerability to atrazine and associated water quality impacts may rise in the U.S. Corn Belt, especially in sites with low atrazine degradation and sorption.


Subject(s)
Atrazine , Groundwater , Herbicides , Agriculture , Midwestern United States , Zea mays
7.
Tuberculosis (Edinb) ; 132: 102141, 2022 01.
Article in English | MEDLINE | ID: mdl-34808575

ABSTRACT

OBJECTIVE: This study aimed to investigate the expression of long non-coding RNA (lncRNA) growth arrest-special transcript 5 (GAS5) in the serum of tuberculosis (TB) patients and discuss the mechanism of GAS5 in TB by establishing an in-vitro TB cell model. METHODS: Serum expressions of GAS5 and miR-18a-5p were determined by quantitative real-time PCR (qRT-PCR). The effects of GAS5 on macrophage cell viability and the inflammatory response after MTB infection were assessed by CCK-8 and ELISA. Luciferase reporter gene assay was applied to delve into the potential target gene of GAS5. RESULTS: The expression of GAS5 in TB patients was down-regulated, while miR-18a-5p was up-regulated, and the serum inflammatory factors were negatively correlated with the expression level of GAS5. MTB infection induced significant upregulation on the cell viability and inflammatory response but the acceleration effect could be rescued by GAS5-overexpression. Meanwhile, miR-18a-5p was recognized as the target gene of GAS5. CONCLUSION: This study indicated that the expression level of GAS5 in the serum of TB patients was decreased, while in the cells infected with MTB, the down-regulated GAS5 might develop a role in facilitating the cell vitality and the inflammatory response by adsorbing miR-18a-5p in the form of molecular sponge.


Subject(s)
Down-Regulation , Mycobacterium tuberculosis , RNA, Long Noncoding , Tuberculosis , Humans , Inflammation , Mycobacterium tuberculosis/pathogenicity , RNA, Long Noncoding/genetics , THP-1 Cells , Tuberculosis/diagnosis
8.
Environ Pollut ; 285: 117480, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34087637

ABSTRACT

Antibiotic resistance genes (ARGs) may be introduced to agricultural soil through the land application of cattle manure. During a rainfall event, manure-borne ARGs may infiltrate into subsurface soil and leach into groundwater. The objective of this study was to characterize and model the vertical transport of manure-borne ARGs through soil following the land application of beef cattle manure on soil surface. In this study, soil column experiments were conducted to evaluate the influence of manure application on subsurface transport of four ARGs: erm(C), erm(F), tet(O) and tet(Q). An attachment-detachment model with the decay of ARGs in the soil was used to simulate the breakthrough of ARGs in leachates from the control column (without manure) and treatment (with manure) soil columns. Results showed that the first-order attachment coefficient (ka) was five to six orders of magnitude higher in the treatment column than in the control column. Conversely, the first-order detachment and decay coefficients (kd and µs) were not significantly changed due to manure application. These findings suggest that in areas where manure is land-applied, some manure-borne bacteria-associated ARGs will be attached to the soil, instead of leaching to groundwater in near terms.


Subject(s)
Manure , Soil , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Drug Resistance, Bacterial , Genes, Bacterial , Soil Microbiology
9.
Environ Toxicol Pharmacol ; 83: 103582, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33444758

ABSTRACT

To compare the influence of water samples collected from various areas on toxic effect of HNS, we examined the toxic effect of two commonly found HNS: p-chloroaniline and butyl acrylate, on Nannochloropsis oculata cultured in seawater collected from Laizhou bay and Jiaozhou bay (China). The results showed that both p-chloroaniline and butyl acrylate had significant toxic effect on N. oculata cultured in both water samples. P-chloroaniline inhibited its net oxygenation rate and oxygen consumption rate. Butyl acrylate inhibited the net oxygenation rate whereas significantly stimulated oxygen consumption rate. Performance of N. oculata changed between two water samples under same level of p-chloroaniline and butyl acrylate. The net oxygenation rate of N. oculata cultured in the seawater from the Jiaozhou bay increased by 11.60 %, the oxygen consumption rate increased by 26.91 %, algae cell growth decreased by 16.83 %, compared to those from Laizhou bay. The Fv/Fm of N. oculata cultured in Jiaozhou bay was more significantly inhibited at 0.5 and 2.0 mg L-1 p-chloroaniline, while it was significantly inhibited at 5. 0 mg L-1 of butyl acrylate, compared to those from Laizhou bay. Moreover, the toxic effect of both HNS on net oxygenation rate and oxygen consumption rate were significantly attenuated as the concentration increased. The growth inhibition of microalgae cultured in two seawater samples was more evident at 0.5 and 5.0 mg L-1 p-chloroaniline than at 2.0 mg L-1 p-chloroaniline,and the growth inhibition of microalgae cultured in two seawater samples was more evident at 2.0 and 5.0 mg L-1 butyl acrylate than at 0.5 mg L-1 butyl acrylate. These results indicated that toxic effect of p-chloroaniline and butyl acrylate on the growth of N. oculata was influenced by the pollutants in the two water samples. Consequently, a corresponding research on water sample is required in advance to increase accuracy of future ecological risk assessment of HNS.


Subject(s)
Acrylates/toxicity , Aniline Compounds/toxicity , Microalgae/drug effects , Stramenopiles/drug effects , Water Pollutants, Chemical/toxicity , Microalgae/growth & development , Seawater , Stramenopiles/growth & development
10.
Environ Sci Pollut Res Int ; 28(14): 17928-17941, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33410037

ABSTRACT

Organic and nitrogen pollutants in mine water could be removed effectively during the storage and transport of water in a coal mine underground reservoir packed with coal gangue through various water-rock interactions. However, little is known about the effect of the released dissolved organic matter (DOM) derived from the packed matrix on their removal. Column experiments were performed at a Darcy flux of 1.56 cm·h-1 at 25 °C to investigate the characteristics of DOM derived from Jurassic and Permian coal gangue individually packed in underground reservoirs of Bulianta (BL1) and Baode (BD2) coal mines. Chemical characteristics of the DOM were analyzed by using the ultraviolet and visible (UV-Vis) absorbance and fluorescence spectroscopy techniques. Results showed that the values of dissolved organic carbon (DOC) and electricity (EC) in the outlet of column packed with BL1 were obviously higher than those from BD2 due to the higher permeability of BL1 with more complex mineralogical and chemical compositions. The parallel factor analysis (PARAFAC) indicated that the fluorescence components in the DOM derived from BL1 and BD2 were individually dominated by the humic-like and tryptophan-like substances. Thus, the higher aromaticity, hydrophobicity, and humification indicated by the specific ultraviolet absorbance at 254 nm (SUVA254) and 260 nm (SUVA260) and humification index (HIX) were observed in the DOM from the younger Jurassic BL1, implying that the DOM may contain more plant-derived precursors. Meanwhile, the higher values of fluorescence index (FI) and biological/autochthonous index (BIX) confirmed the stronger autochthonous characterization of DOM originated from the earlier Permian BD2. The observed characterization of DOM will further extend the understanding of purification mechanism of mine water during its storage and transport in coal mine underground reservoirs packed with coal gangue of different geologic ages.


Subject(s)
Coal , Nitrogen , Factor Analysis, Statistical , Humic Substances/analysis , Spectrometry, Fluorescence , Water
11.
Water Res ; 188: 116536, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33125999

ABSTRACT

This study integrates microfluidic experiments and mathematical modeling to study the impacts of biofilms on flow in porous media and to explore approaches to simplify modeling permeability with complicated biofilm geometries. E. coli biofilms were grown in a microfluidic channel packed with a single layer of glass beads to reach three biofilm levels: low, intermediate, and high, with biofilm ratios (ßr) of 2.7%, 17.6%, and 55.2%, respectively. Two-dimensional biofilm structures and distributions in the porous medium were modeled by digitizing confocal images and considering broad ranges of biofilm permeability (kb) (from 10-15 m2 to 10-7 m2) and biofilm porosity (εb) (from 0.2 to 0.8). The overall permeability of the porous medium (k), the flow pathways and the overall/local pressure gradients were found to be highly dependent on ßr and kb but were moderately impacted by εb when the biofilm levels were high and intermediate with kb>10-11 m2. When biofilm structures are well developed, simplified biofilm geometries, such as uniform coating and symmetric contact filling, can provide reasonable approximations of k.


Subject(s)
Escherichia coli , Microfluidics , Biofilms , Models, Theoretical , Porosity
12.
J Hazard Mater ; 403: 123719, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33264895

ABSTRACT

Aerated, slow-release oxidants are a relatively new technology for treating contaminated aquifers. A critical need for advancing this technology is developing a reliable method for predicting the radius of influence (ROI) around each drive point. In this work, we report a series of laboratory flow tank experiments and numerical modeling efforts designed to predict the release and spreading of permanganate from aerated oxidant candles (oxidant-wax composites). To mimic the design of the oxidant delivery system used in the field, a double screen was used in a series of flow tank experiments where the oxidant was placed inside the inner screen and air was bubbled upward in the gap between the screens. This airflow pattern creates an airlift pump that causes water and oxidant to be dispersed from the top of the outer screen and drawn in at the bottom. Using this design, we observed that permanganate spreading and ROI increased with aeration and decreased with advection. A coupled bubble flow and transport model was able to successfully reproduce observed results by mimicking the upward shape and spreading of permanganate under various aeration and advection rates.


Subject(s)
Oxidants , Water Pollutants, Chemical , Laboratories , Manganese Compounds , Oxidation-Reduction , Oxides , Potassium Permanganate , Water Pollutants, Chemical/analysis
13.
Environ Pollut ; 265(Pt A): 115024, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32806406

ABSTRACT

Climate change will impact soil properties such as soil moisture, organic carbon and temperature and changes in these properties will influence the sorption, biodegradation and leaching of trace organic contaminants to groundwater. In this study, we conducted a modeling case study to evaluate atrazine and estrone transport in the subsurface under current and future climate conditions at a field site in central Nebraska. According to the modeling results, in the future, enhanced evapotranspiration and increased average air temperature may cause drier soil conditions, which consequently reduces the biodegradation of atrazine and estrone in the water phase. On the other hand, greater transpiration rates lead to greater root solute uptake which may decrease the concentration of atrazine and estrone in the soil profile. Another consequence of future climate is that the infiltration and leaching rates for both atrazine and estrone may be lower under future climate scenarios. Reduced infiltration of trace organic compounds may indicate that lower trace organic concentrations in groundwater may occur under future climate scenarios.


Subject(s)
Atrazine , Agriculture , Climate Change , Estrone , Nebraska
14.
Ecotoxicol Environ Saf ; 189: 109995, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31785947

ABSTRACT

The use of p-chloroaniline (PCA) in various aspects leads to its existence and accumulation in the environment. Relevant researches showed that PCA was a prime toxic pollutant that had imposed a serious risk to public health and the environment. This paper investigated the toxicity effects of PCA on Platymonas subcordiformis (P. subcordiformis) and the biodegradation of PCA by the marine microalga. In the toxicity experiments, the EC50 of PCA on P. subcordiformis at 24 h, 48 h, 72 h and 96 h was 41.42, 24.04, 17.15 and 13.05 mg L-1, respectively. The pigment parameters including chlorophyll a, chlorophyll b, carotenoids, photosynthetic O2 release rate, respiration O2 consumption rate and the chlorophyll fluorescence parameters including Fv/Fm, ETR and qP decreased greatly while antioxidant enzyme activities (SOD, CAT) and the chlorophyll fluorescence parameter NPQ increased when P. subcordiformis exposed to PCA compared with the control group. Fv/Fm would be a suitable indicator for assessing the toxicity of PCA in marine environment based on the analysis of Pearson's correlation coefficient and Integrated Biomarker Response (IBR). The degradation assay in P. subcordiformis indicated that the green marine microalga had the ability to remove and degrade PCA, and the order of removal and degradation proportion of PCA was 2 mg L-1 > 5 mg L-1>10 mg L-1. The maximum removal and biodegradation percentage was 54% and 34%, respectively.


Subject(s)
Aniline Compounds/toxicity , Chlorophyta/drug effects , Water Pollutants, Chemical/toxicity , Aniline Compounds/metabolism , Biodegradation, Environmental , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll A/metabolism , Chlorophyta/metabolism , Oxygen/metabolism , Photosynthesis/drug effects , Water Pollutants, Chemical/metabolism
15.
Environ Pollut ; 253: 930-938, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31351301

ABSTRACT

The imprints of fireworks displays on the adjacent water body were investigated from the perspective of cogeneration of black carbon, metals and perchlorate (ClO4-). In particular, the mixing and dissipation of ClO4- were studied at Oak Lake, Lincoln, Nebraska, following fireworks displays in 2015 and 2016. Following the display, ClO4- concentration in the water increased up to 4.3 µg/L and 4.0 µg/L in 2015 and 2016, respectively. A first-order model generally provided a good fit to the measured perchlorate concentrations from which the rate of dissipation was estimated as 0.07 d-1 in 2015 and 0.43 d-1 in 2016. SEM images show imprints of soot and metal particles in aerosol samples. EDS analysis of the lake sediment confirmed the presence of Si, K, Ca, Zn and Ba, most of which are components of fireworks. The δ13C range of -7.55‰ to -9.19‰ in the lake water system closely resembles fire-generated carbon. Cogeneration of black carbon and metal with perchlorate was established, indicating that ClO4- is an excellent marker of fireworks or a burning event over all other analyzed parameters. Future microcosmic, aggregation and column-based transport studies on black carbon in the presence of perchlorate and metals under different environmental conditions will help in developing transport and fate models for perchlorate and black carbon particles.


Subject(s)
Environmental Monitoring , Perchlorates/analysis , Soot/chemistry , Water Pollutants, Chemical/analysis , Carbon/analysis , Lakes/chemistry , Metals/analysis , Nebraska , Perchlorates/chemistry , Quercus , Soot/analysis
16.
Sci Total Environ ; 685: 514-526, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31176972

ABSTRACT

Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize the adverse impacts of agricultural activities on groundwater quality. To evaluate the direct effects of climate change on the transport and accumulation of nitrate-N, we developed an integrated modeling framework combining climatic change, nitrate-N infiltration in the unsaturated zone, and groundwater level fluctuations. The study was based on a center-pivot irrigated corn field at the Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge (GR) and actual evapotranspiration (ETa) rates were predicted via an inverse vadose zone modeling approach by using climatic data generated by the Weather Research and Forecasting (WRF) climate model under the RCP 8.5 scenario, which was downscaled from the global CCSM4 model to a resolution of 24 km by 24 km. A groundwater flow model was first calibrated on the basis of historical groundwater table measurements and then applied to predict the future groundwater table in 2057-2060. Finally, the predicted future GR rate, ETa rate, and groundwater level, together with future precipitation data from the WRF climate model, were used in a three-dimensional (3D) model to predict nitrate-N concentrations in the subsurface (saturated and unsaturated parts) from 2057 to 2060. The future GR was predicted to decrease in the study area, as compared with the average GR data from the literature. Correspondingly, the groundwater level was predicted to decrease (30 to 60 cm) over the 5 years of simulation in the future. The nitrate-N mass in the simulation domain was predicted to increase but at a slower rate than in the past. Sensitivity analysis indicated that the accumulation of nitrate-N is sensitive to groundwater table elevation changes and irrigation rates.

17.
Environ Sci Process Impacts ; 21(6): 999-1010, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31115391

ABSTRACT

The objective of this study was to assess the persistence and transport of atrazine at high infiltration rates expected from higher intensity precipitation associated with climate change scenarios in the midwestern U.S. The transport and transformation of atrazine was monitored in column experiments at high infiltration rates (64-119 mm d-1) associated with increased precipitation intensity. The optimum linear sorption and the lumped Monod biokinetic parameters were determined by inverting observed break-through curves (BTCs) using the advection-dispersion-sorption-degradation model. Batch microcosm studies were also conducted to examine the effect of moisture content (5%, 15% and 25%) on atrazine degradation and support the column results. BTCs from both soil types with continuous atrazine input showed a characteristic pattern of a pulse input i.e. lag phase prior to rapid atrazine degradation. The rate of atrazine leaching at higher infiltration rates was not fast enough to counteract the effect of enhanced degradation. Higher infiltration rates enriched the distribution of hydroxyatrazine in the soil profile for sandy loam, but their effect was minimal in loam soil. The pattern of degradation obtained in batch microcosms agreed with the column results. In both soils, mean half-life of atrazine was lower (4-8 days) at high soil moisture contents. Under future climate change scenarios, where more intense precipitation is likely to result in higher infiltration rates and increased soil moisture, the potential for groundwater pollution from atrazine may be reduced, especially in areas with a long history of atrazine application to soil.


Subject(s)
Atrazine/metabolism , Herbicides/metabolism , Soil Pollutants/metabolism , Agriculture , Biodegradation, Environmental , Climate Change , Rain
18.
J Contam Hydrol ; 211: 15-25, 2018 04.
Article in English | MEDLINE | ID: mdl-29605158

ABSTRACT

Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations.


Subject(s)
Groundwater/analysis , Models, Theoretical , Nitrates/analysis , Soil/chemistry , Agricultural Irrigation , Agriculture , Environmental Monitoring , Fertilizers , Groundwater/chemistry , Imaging, Three-Dimensional , Nebraska , Nitrogen/analysis , Water Pollutants, Chemical/analysis
19.
Colloids Surf B Biointerfaces ; 166: 98-107, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29550546

ABSTRACT

The assembly and accumulation of α-synuclein fibrils are implicated in the development of several neurodegenerative disorders including multiple system atrophy and Parkinson's disease. Pre-existing α-synuclein fibrils can recruit and convert soluble non-fibrillar α-synuclein to the fibrillar form similar to what is observed in prion diseases. This raises concerns regarding attachment of fibrillary α-synuclein to medical instruments and subsequent exposure of patients to α-synuclein similar to what has been observed in iatrogenic transmission of prions. Here, we evaluated adsorption and desorption of α-synuclein to two surfaces: stainless steel and a gold surface coated with a 11-Amino-1-undecanethiol hydrochloride self-assembled-monolayer (SAM) using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. α-Synuclein was found to attach to both surfaces, however, increased α-synuclein adsorption was observed onto the positively charged SAM surface compared to the stainless steel surface. Dynamic light scattering data showed that larger α-synuclein fibrils were preferentially attached to the stainless steel surface when compared with the distributions in the original α-synuclein solution and on the SAM surface. We determined that after attachment, introduction of a 1N NaOH solution could completely remove α-synuclein adsorbed on the stainless steel surface while α-synuclein was retained on the SAM surface. Our results indicate α-synuclein can bind to multiple surface types and that decontamination is surface-dependent.


Subject(s)
alpha-Synuclein/chemistry , Protein Conformation , Stainless Steel , Surface Properties
20.
Arch Biochem Biophys ; 630: 47-53, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28734729

ABSTRACT

Accumulating documents have been suggested that microRNA-143 (miR-143) function as a tumor suppressor, involved in many biological processes including tumor initiation and progression. However, the biological function and molecular mechanism of miR-143 in Osteosarcoma (OS) still remains to be further investigated. Despite many efforts have been made, the prognosis of OS is still unsatisfied. Thus, exploring the underlying mechanism of OS and finding new treatment targets is essential for improving the survival rate of OS patients. In our study, we determined the level of miR-143 in clinical OS tissues and cells, and explored its function and underlying mechanisms in the tumorigenesis of OS. Our findings revealed that miR-143 expression was significantly downregulated in OS tissues and cell lines. Gain-of-function assays indicated that forced expression of miR-143 in OS cells inhibited cell proliferation and migration/invasion. Bioinformatics and luciferase reporter assays confirmed that MAPK7 was targets gene of miR-143. The results of the present study indicated that miR-143 could be a potential target for treating OS.


Subject(s)
Bone Neoplasms/metabolism , Cell Movement , Cell Proliferation , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Neoplasm Proteins/metabolism , Osteosarcoma/metabolism , RNA, Neoplasm/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Humans , Mitogen-Activated Protein Kinase 7/genetics , Neoplasm Proteins/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , RNA, Neoplasm/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...