Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 260
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124435, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38796890

ABSTRACT

Infections induced by pathogenic microorganisms will bring negative effects such as diseases that damage health and result in heavy economic burden. Therefore, it is very important to detect and identify the pathogens in time. Moreover, traditional clinical diagnosis or food testing often faces the problem of dealing with a large number of samples. Here, we designed a high-throughput fluorescent sensor array based on the different binding ability of five tetraphenylethylene derivatives (TPEs) with various side chains to different kinds of pathogenic microbes, which is used to detect and distinguish various species, so as to realize rapid mass diagnosis, and hopefully provide guidance for further determination of microbial infections and clinical treatment.

2.
Food Res Int ; 183: 114204, 2024 May.
Article in English | MEDLINE | ID: mdl-38760136

ABSTRACT

This study aimed to investigate the impact of three cooking ways (sous vide (SV), frying (FR) and roasting (RO)) on pork protein digestion characteristics under conditions simulating healthy adult (control, C) and elderly individuals with achlorhydria (EA). Changes in degree of hydrolysis (DH), SDS-PAGE profiles, zeta potential, particle size and secondary structure during digestion were evaluated. Our results revealed the EA condition markedly affected the protein digestion process of pork with different cooking ways. The DH values of SV (25.62%), FR (21.38%) and RO (19.40%) under the EA condition were significantly lower than those of under the control condition (38.32%, 33.00% and 30.86%, respectively). Moreover, differences were also observed among three cooking ways under the EA condition. For a given cooking way, the differences between control and EA conditions gradually diminished from the gastric to the intestinal phase. Under a certain digestion condition, SV maintained the highest degree of digestion throughout the process, particularly under the EA condition. Therefore, we conclude that pork cooked by sous vide is more recommendable for the elderly considering protein digestibility.


Subject(s)
Cooking , Digestion , Cooking/methods , Humans , Animals , Aged , Swine , Adult , Pork Meat/analysis , Particle Size , Hydrolysis , Meat Proteins
3.
Micromachines (Basel) ; 15(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38793178

ABSTRACT

Resistive random access memory (RRAM) holds great promise for in-memory computing, which is considered the most promising strategy for solving the von Neumann bottleneck. However, there are still significant problems in its application due to the non-uniform performance of RRAM devices. In this work, a bilayer dielectric layer memristor was designed based on the difference in the Gibbs free energy of the oxide. We fabricated Au/Ta2O5/HfO2/Ta/Pt (S3) devices with excellent uniformity. Compared with Au/HfO2/Pt (S1) and Au/Ta2O5/Pt (S2) devices, the S3 device has a low reset voltage fluctuation of 2.44%, and the resistive coefficients of variation are 13.12% and 3.84% in HRS and LRS, respectively, over 200 cycles. Otherwise, the bilayer device has better linearity and more conductance states in multi-state regulation. At the same time, we analyze the physical mechanism of the bilayer device and provide a physical model of ion migration. This work provides a new idea for designing and fabricating resistive devices with stable performance.

4.
Arthritis Res Ther ; 26(1): 109, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802957

ABSTRACT

BACKGROUND AND AIMS: The 2022 European Society of Cardiology/European Respiratory Society (ESC/ERS) guideline has recently revised the hemodynamic definition of pulmonary arterial hypertension. However, there is currently limited research on the prognosis and treatment of system lupus erythematosus-associated pulmonary arterial hypertension (SLE-PAH) patients that have been reclassified by the new hemodynamic definition. This study aims to analyze the prognosis of newly reclassified SLE-PAH patients and provide recommendations for the management strategy. METHODS: This retrospective study analyzed records of 236 SLE-PAH patients who visited Peking Union Medical College Hospital (PUMCH) from 2011 to 2023, among whom 22 patients were reclassified into mild SLE-PAH (mean pulmonary arterial pressure (mPAP) of 21-24 mmHg, pulmonary vascular resistance (PVR) of 2-3 WU, and PAWP ≤ 15 mmHg) according to the guidelines and 14 were defined as unclassified SLE-PAH patients (mPAP 21-24 mmHg and PVR ≤ 2 WU). The prognosis was compared among mild SLE-PAH, unclassified SLE-PH, and conventional SLE-PAH patients (mPAP ≥ 25 mmHg and PVR > 3WU). Besides, the effectiveness of pulmonary arterial hypertension (PAH)-specific therapy was evaluated in mild SLE-PAH patients. RESULTS: Those mild SLE-PAH patients had significantly longer progression-free time than the conventional SLE-PAH patients. Among the mild SLE-PAH patients, 4 did not receive PAH-specific therapy and had a similar prognosis as patients not receiving specific therapy. CONCLUSIONS: This study supports the revised hemodynamic definition of SLE-PAH in the 2022 ESC/ERS guideline. Those mild and unclassified SLE-PH patients had a better prognosis, demonstrating the possibility and significance of early diagnosis and intervention for SLE-PAH. This study also proposed a hypothesis that IIT against SLE might be sufficient for those reclassified SLE-PAH patients.


Subject(s)
Lupus Erythematosus, Systemic , Pulmonary Arterial Hypertension , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Female , Male , Prognosis , Retrospective Studies , Adult , Middle Aged , Pulmonary Arterial Hypertension/diagnosis , Pulmonary Arterial Hypertension/etiology , Pulmonary Arterial Hypertension/physiopathology , Practice Guidelines as Topic/standards , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Hypertension, Pulmonary/physiopathology
5.
Phys Rev Lett ; 132(15): 155001, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682968

ABSTRACT

We report the femtosecond time-resolved dynamics of relativistic electron pulses in ultraintense laser-foil interactions, by characterizing the terahertz self-radiation with single-shot ultrabroadband interferometry. Experimental measurements together with theoretical modeling reveal that the electron pulses inherit the duration of the driving laser pulse. We also visualize the electron recirculation dynamics, where electrons remain trapped inside the self-generated electrostatic potential well and rebound back and forth around the thin foil for hundreds of femtoseconds. Our results not only demonstrate an in situ, real-time metrology scheme for electron bursts, but also have important implications for understanding and manipulating the time-domain properties of laser-driven particle and radiation sources.

6.
J Affect Disord ; 357: 148-155, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670463

ABSTRACT

BACKGROUND: Anxiety disorders are among the most common mental health disorders in the middle aged and older population. Because older individuals are more likely to have multiple comorbidities or increased frailty, the impact of anxiety disorders on their overall well-being is exacerbated. Early identification of anxiety disorders using machine learning (ML) can potentially mitigate the adverse consequences associated with these disorders. METHODS: We applied ML to the data from the Canadian Longitudinal Study on Aging (CLSA) to predict the onset of anxiety disorders approximately three years in the future. We used Shapley value-based methods to determine the top factor for prediction. We also investigated whether anxiety onset can be predicted by baseline depression-related predictors alone. RESULTS: Our model was able to predict anxiety onset accurately (Area under the Receiver Operating Characteristic Curve or AUC = 0.814 ± 0.016 (mean ± standard deviation), balanced accuracy = 0.741 ± 0.016, sensitivity = 0.743 ± 0.033, and specificity = 0.738 ± 0.010). The top predictive factors included prior depression or mood disorder diagnosis, high frailty, anxious personality, and low emotional stability. Depression and mood disorders are well known comorbidity of anxiety; however a prior depression or mood disorder diagnosis could not predict anxiety onset without other factors. LIMITATION: While our findings underscore the importance of a prior depression diagnosis in predicting anxiety, they also highlight that it alone is inadequate, signifying the necessity to incorporate additional predictors for improved prediction accuracy. CONCLUSION: Our study showcases promising prospects for using machine learning to develop personalized prediction models for anxiety onset in middle-aged and older adults using easy-to-access survey data.


Subject(s)
Anxiety Disorders , Machine Learning , Humans , Female , Male , Canada/epidemiology , Longitudinal Studies , Aged , Anxiety Disorders/epidemiology , Anxiety Disorders/diagnosis , Anxiety Disorders/psychology , Middle Aged , Aging/psychology , Aged, 80 and over , Depression/epidemiology , Depression/diagnosis , Depression/psychology , Comorbidity , Frailty/diagnosis , Frailty/epidemiology , Prospective Studies , Anxiety/epidemiology , Anxiety/diagnosis , Anxiety/psychology
7.
Br J Cancer ; 130(11): 1770-1782, 2024 May.
Article in English | MEDLINE | ID: mdl-38600327

ABSTRACT

BACKGROUND: Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment (TME). However, the crosstalk between oesophageal squamous cell carcinoma (ESCC) cells and TAMs remains largely unexplored. METHODS: Clinical samples and the TCGA database were used to evaluate the relevance of SPP1 and TAM infiltration in ESCC. Mouse models were constructed to investigate the roles of macrophages educated by SPP1 in ESCC. Macrophage phenotypes were determined using qRT‒PCR and immunohistochemical staining. RNA sequencing was performed to elucidate the mechanism. RESULTS: Increasing expression of SPP1 correlated with M2-like TAM accumulation in ESCC, and they both predicted poor prognosis in the ESCC cohort. Knockdown of SPP1 significantly inhibited the infiltration of M2 TAMs in xenograft tumours. In vivo mouse model experiments showed that SPP1-mediated education of macrophages plays an essential role in the progression of ESCC. Mechanistically, SPP1 recruited macrophages and promoted M2 polarisation via CD44/PI3K/AKT signalling activation and then induced VEGFA and IL6 secretion to sustain ESCC progression. Finally, blockade of SPP1 with RNA aptamer significantly inhibited tumour growth and M2 TAM infiltration in xenograft mouse models. CONCLUSIONS: This study highlights SPP1-mediated crosstalk between ESCC cells and TAMs in ESCC. SPP1 could serve as a potential target in ESCC therapy.


Subject(s)
Disease Progression , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Osteopontin , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Animals , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Mice , Esophageal Neoplasms/pathology , Esophageal Neoplasms/immunology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor Microenvironment/immunology , Osteopontin/genetics , Osteopontin/metabolism , Cell Line, Tumor , Macrophages/metabolism , Macrophages/immunology , Female , Xenograft Model Antitumor Assays , Male , Prognosis , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics
8.
Neuroreport ; 35(9): 584-589, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38687896

ABSTRACT

OBJECTIVE: This study examined the effect of context on the prediction of emotional words with varying valences. It investigated the neural mechanisms underlying the processing differences of emotion words with different valences in both predictable and unpredictable contexts. Additionally, it aimed to address the conflicting results regarding the processing time in predictive contexts reported in previous studies. METHODS: Participants were instructed to carefully read the text that included the specified emotion words. Event-related potentials elicited by emotional words were measured. To ensure that the participants can read the text carefully, 33% of the texts are followed by comprehension problems. After reading the text, the comprehension questions were answered based on the text content. RESULTS: The study revealed that the N400 amplitude elicited by an unpredictable context was greater than that elicited by a predictable context. Additionally, the N400 amplitude triggered by positive emotion words was larger than that triggered by negative emotion words. However, there was no significant difference in late positive component amplitude observed between contextual prediction and emotional word valence. CONCLUSION: The present study suggests that predictive processing takes place at an intermediate stage of speech processing, approximately 400 ms after stimulus onset. Furthermore, the presence of a predictive context enhances the processing of emotional information. Notably, brain activity is more pronounced during the processing of positive emotional stimuli compared to negative emotional stimuli. Additionally, the facilitative effect of a predictable context diminishes in the advanced phase of Chinese speech comprehension.


Subject(s)
Electroencephalography , Emotions , Evoked Potentials , Reading , Humans , Emotions/physiology , Evoked Potentials/physiology , Female , Male , Young Adult , Brain/physiology , Adult , Comprehension/physiology
9.
Phys Rev E ; 109(3-2): 035205, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632769

ABSTRACT

The double-cone ignition (DCI) scheme has been proposed as one of the alternative approaches to inertial confinement fusion, based on direct-drive and fast-ignition, in order to reduce the requirement for the driver energy. To evaluate the conical implosion energetics from the laser beams to the plasma flows, a series of experiments have been systematically conducted. The results indicate that 89%-96% of the laser energy was absorbed by the target, with moderate stimulated Raman scatterings. Here 2%-6% of the laser energy was coupled into the plasma jets ejected from the cone tips, which was mainly restricted by the mass reductions during the implosions inside the cones. The supersonic dense jets with a Mach number of 4 were obtained, which is favorable for forming a high-density, nondegenerated plasma core after the head-on collisions. These findings show encouraging results in terms of energy transport of the conical implosions in the DCI scheme.

10.
Patterns (N Y) ; 5(4): 100950, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645767

ABSTRACT

Standard energy-consumption testing, providing the only publicly available quantifiable measure of battery electric vehicle (BEV) energy consumption, is crucial for promoting transparency and accountability in the electrified automotive industry; however, significant discrepancies between standard testing and real-world driving have hindered energy and environmental assessments of BEVs and their broader adoption. In this study, we propose a data-driven evaluation method for standard testing to characterize BEV energy consumption. By decoupling the impact of the driving profile, our evaluation approach is generalizable to various driving conditions. In experiments with our approach for estimating energy consumption, we achieve a 3.84% estimation error for 13 different multiregional standardized test cycles and a 7.12% estimation error for 106 diverse real-world trips. Our results highlight the great potential of the proposed approach for promoting public awareness of BEV energy consumption through standard testing while also providing a reliable fundamental model of BEVs.

11.
Huan Jing Ke Xue ; 45(3): 1830-1839, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471894

ABSTRACT

The removal mechanisms of phthalic acid esters (PAEs) have attracted much attention because of their endocrine-disrupting properties and persistence in environmental media. In order to reveal the removal mechanism of PAEs and involved keystone taxa and functional genes, purple soils were polluted by di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP), respectively, along a gradient of 0, 5, 10, and 20 mg·kg-1 and cultured for 90 days in the dark. The results showed that the degradation dynamics of DBP and DEHP were well-fitted by the first-order kinetic model, and the half-life of DBP and DEHP ranged from 17.0 to 38.2 days. The degradation rate of DBP (5 mg·kg-1) was the fastest, and that of DEHP (20 mg·kg-1) was the slowest. The soil samples of the seventh day and the fifteenth day were analyzed using metagenomic sequencing. NMDS and cluster analysis showed that there was a significant difference between the bacterial community structure of soil samples from the seventh day and the fifteenth day. The relative abundance of Actinobacteria increased from the seventh day to the fifteenth day. The smaller the half-life of DBP or DEHP, the higher the relative abundance of Actinobacteria in the different treatments. In addition, Streptomyces was the dominant genus in all polluted soils. Co-occurrence network analysis elucidated that Pandoraea was a keystone genus of the soil bacterial communities, which could be used to indicate the pollution levels of DBP and DEHP. The results of KEGG annotation demonstrated that Pandoraea was responsible for benzoate degradation, quorum sensing, ABC transporters, and the two-component system and could promote the intercellular communications and the microbial growth and proliferation and maintain the stability of the community structure. Therefore, the degradation rate of DBP and DEHP in purple soils depended on their initial content and their own properties. Actinobacteria played an important role in the PAEs degradation, and Pandoraea played a major part in promoting PAEs degradation and regulating the stability of the structure and function of degrading bacterial communities.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Soil/chemistry , Phthalic Acids/analysis , Dibutyl Phthalate , Esters/analysis
12.
Heliyon ; 10(6): e27861, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533073

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease in which immune cells and inflammatory cytokines are abnormally activated, leading to immunoregulatory dysfunction in the body and triggering systemic inflammatory responses. The interaction between CXC chemokine receptor 4 (CXCR4) and heterotrimeric G-protein α-subunit Gαq (Gnαq) activates phospholipase Cß (PLCß), which influences the expression of downstream effectors and participates widely in the onset and development of various diseases, thus suggesting the potential involvement of these molecules in RA pathogenesis. Therefore, the present study aimed to determine whether the CXCR4-Gnαq-PLCß signaling pathway participates in the onset and development of RA. Using a collagen-induced arthritis (CIA) rat model, we found that compared with the control (healthy) rat group, CIA rats exhibited highly time-dependent arthritis, with the maximum arthritis score occurring in week 3. In contrast to the splenic and joint tissue of control rats, CIA rats showed obvious hyperplasia in the lymphoid white pulp and main germination centers of the spleen, narrowing of joint cavities, and inflammatory cellular infiltration on articular surfaces. The serum levels of expression of IL-1ß, IL-4, IL-6, and TNF-α were significantly elevated (P < 0.05, P < 0.01). Core genes of the CXCR4-Gnαq-PLCß pathway, namely CXCR4, Gnαq, PLCß1, MMP1, and MMP3, also showed a significant increase in mRNA and protein expression levels (P < 0.05, P < 0.01). Proteins related to the CXCR4-Gnαq-PLCß pathway were mainly localized to the red and white pulp regions in the spleen as well as in stromal, endothelial, and subdifferentiated synovial cells in the joints. These results indicated that CXCR4 is dependent on Gnαq for inducing the expression of PLCß1 and stimulation of secretion of inflammatory cytokines by inflammatory cells. This consequently affects the expression of matrix metalloproteinases (MMPs), which serve as downstream effectors, thereby promoting RA pathogenesis. Our findings play an important role in elucidating the mechanisms of the onset and development of RA.

13.
J Colloid Interface Sci ; 664: 13-24, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38458051

ABSTRACT

At present, there are few reports on the micron-sized catalysts for overall water splitting. In this study, phosphating method were used to construct the self-supporting catalyst (V doped Ni microspheres coated by NiMoO4/Ni12P5) with microspherical structure, providing a short path and a stable structure to guarantee quick electron transfer and excellent catalytic performance. Hence, oxygen evolution reaction (OER) only needs 254 mV to reach a current density of 50 mA cm-2 in 1.0 mol/L KOH, after 114 h without attenuation. The catalyst can achieve a current densitiy of 10 mA cm-2 with a voltage of only 158 mV for hydrogen evolution reaction (HER). When micron scale V-Ni@NiMoO4/Ni12P5 is used as both anode and cathode for overall water splitting, the device can operate at a current density of 10 mA cm-2 for more than 200 h of good stability. Its superior catalytic performance can be attributed to the construction of micron size and phosphating. DFT calculations indicate that the introduction of P better activates the adsorbed *OH and H2O*, reduces reaction the energy barrier, and improves the catalytic activity.

14.
Arch Virol ; 169(4): 81, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38519716

ABSTRACT

Bacillus subtilis is a Gram-positive bacterium that is widely used in fermentation and in the pharmaceutical industry. Phage contamination occasionally occurs in various fermentation processes and causes significant economic loss. Here, we report the isolation and characterization of a temperate B. subtilis phage, termed phi18-2, from spore powder manufactured in a fermentation plant. Transmission electron microscopy showed that phi18-2 has a symmetrical polyhedral head and a long noncontractile tail. Receptor analysis showed that phi18-2 recognizes wall teichoic acid (WTA) for infection. The phage virions have a linear double-stranded DNA genome of 64,467 bp with identical direct repeat sequences of 309 bp at each end of the genome. In lysogenic cells, the phage genome was found to be present in the cytoplasm without integration into the host cell chromosome, and possibly as a linear phage-plasmid with unmodified ends. Our data may provide some insight into the molecular basis of the unique lysogenic cycle of phage phi18-2.


Subject(s)
Bacillus Phages , Bacteriophages , Bacteriophages/genetics , Bacillus Phages/genetics , DNA, Viral/genetics , Lysogeny , Genome, Viral , Plasmids/genetics , Cytoplasm
15.
Environ Sci Pollut Res Int ; 31(16): 24113-24128, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436853

ABSTRACT

The presence of organic dyes in aquatic systems poses a significant threat to ecosystems and human well-being. Due to recycling challenges, traditional commercial activated carbon is not cost-effective. To address this, an imidazolate acid zeolite framework-8 (ZIF-8)-modified magnetic adsorbent (ZMPLB-800) was synthesized through the in-situ formation of ZIF-8 and subsequent carbonization at 800 °C, using magnetic pineapple leaf biochar (MPLB) as a carrier. The porous structure of ZMPLB-800 facilitates the rapid passage of dye molecules, enhancing adsorption performance. ZMPLB-800 exhibited remarkable adsorption capacity for methylene blue (MB) across a pH range of 3-13, with a maximum adsorption capacity of 455.98 mg g-1. Adsorption kinetics and thermodynamics followed the pseudo-second-order kinetic model and Langmuir isotherm model. Mechanisms of MB adsorption included pore filling, hydrogen bonding, electrostatic interactions, π-π interactions, and complexation through surface functional groups. Additionally, ZMPLB-800 demonstrated excellent regeneration performance, recording a removal efficiency exceeding 87% even after five adsorption/desorption cycles. This study provides a novel strategy for treating dye wastewater with MOF composites, laying the foundation for waste biomass utilization.


Subject(s)
Ananas , Water Pollutants, Chemical , Zeolites , Adsorption , Charcoal/chemistry , Ecosystem , Hydrogen-Ion Concentration , Kinetics , Magnetic Phenomena , Methylene Blue/chemistry , Plant Leaves , Wastewater , Water Pollutants, Chemical/chemistry
16.
Mol Cancer ; 23(1): 62, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38519953

ABSTRACT

While strategies such as chemotherapy and immunotherapy have become the first-line standard therapies for patients with advanced or metastatic cancer, acquired resistance is still inevitable in most cases. The introduction of antibody‒drug conjugates (ADCs) provides a novel alternative. ADCs are a new class of anticancer drugs comprising the coupling of antitumor mAbs with cytotoxic drugs. Compared with chemotherapeutic drugs, ADCs have the advantages of good tolerance, accurate target recognition, and small effects on noncancerous cells. ADCs occupy an increasingly important position in the therapeutic field. Currently, there are 13 Food and Drug Administration (FDA)‒approved ADCs and more than 100 ADC drugs at different stages of clinical trials. This review briefly describes the efficacy and safety of FDA-approved ADCs, and discusses the related problems and challenges to provide a reference for clinical work.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , United States , Humans , Immunoconjugates/therapeutic use , United States Food and Drug Administration , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Treatment Outcome
17.
Environ Sci Pollut Res Int ; 31(16): 23979-23994, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436846

ABSTRACT

The sulfate radical-based advanced oxidation processes (SR-AOPs) is a promising method for the degradation of pollutants, with the development of highly efficient catalysts for persulfate activation has been widely concerned. The novel BiCoFe-LDH (BCF-x) was synthesized successfully by coprecipitation method, which can activate peroxydisulfate (PDS) efficiently to degrade aniline. Comparative analysis with pure CoFe-LDH revealed a remarkable increase in reaction rate constant by approximately 14.66 times; the degradation rate of aniline (10 mg/L) was 100% in 60 min with the condition of 0.5 g/L BCF-1.5 and 0.5 g/L PDS, due to BCF-1.5 which was characterized as a complex of CoFe-LDH and Bi2O2CO3, promoting electron transport to improve the efficiency of activated PDS. In the reaction system, SO4•-, ·OH, and 1O2 were responsible for the aniline degradation and ·OH was the primary one. Furthermore, this work proposes a reaction electron transfer catalytic mechanism, which provided a new insight and good application prospect for efficient activation of PDS for pollutant degradation.


Subject(s)
Aniline Compounds , Environmental Pollutants , Catalysis , Electron Transport , Electrons , Oxidation-Reduction
18.
Chem Biol Interact ; 393: 110955, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38492842

ABSTRACT

Aucubin (AU), an iridoid glycoside extracted from Eucommia ulmoides, exerts anti-osteoporotic effects by promoting osteogenesis, as reported in previous studies. Here, we investigated the effects of AU under mechanical stretch stress. MC3T3-E1 cells were treated with dexamethasone (DEX) in vitro and subjected to mechanical stretch stress to establish an osteoporotic orthodontic force cell model. AU treatment increased the mRNA and protein expressions of BMP2, OPN, RUNX2, COL-1 and other osteogenic differentiation factors in MC3T3-E1 cells. Furthermore, we established an in vivo orthodontic tooth movement (OTM) model of osteoporosis. Serum parameter detection of ALP concentration, radiography of the femur, hematoxylin-eosin (HE) staining, and micro-CT of the maxilla confirmed that AU could partially reverse the damage induced by DEX. Immunohistochemical (IHC) analysis showed that AU increased the expression of COL-1, OCN, and OPN on the tension side of the periodontium. In conclusion, AU treatment promotes osteogenic differentiation under mechanical stretch stress and positively affects bone remodeling during OTM in DEX-induced osteoporosis.


Subject(s)
Iridoid Glucosides , Osteogenesis , Osteoporosis , Humans , Tooth Movement Techniques , Periodontal Ligament , Cell Differentiation , Osteoporosis/drug therapy
19.
Phys Rev Lett ; 132(6): 065105, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38394557

ABSTRACT

Stable transport of laser beams in highly overdense plasmas is of significance in the fast ignition of inertial confinement fusion, relativistic electron generation, and powerful electromagnetic emission, but hard to realize. Early in 1996, Harris proposed an electromagnetically induced transparency (EIT) mechanism, analogous to the concept in atomic physics, to transport a low-frequency (LF) laser in overdense plasmas aided by a high-frequency pump laser. However, subsequent investigations show that EIT cannot occur in real plasmas with boundaries. Here, our particle-in-cell simulations show that EIT can occur in the strongly relativistic regime and result in stable propagation of a LF laser in bounded plasmas with tens of its critical density. A relativistic three-wave coupling model is developed, and the criteria and frequency passband for EIT occurrence are presented. The passband is sufficiently wide in the strongly relativistic regime, allowing EIT to work sustainably. Nevertheless, it is narrowed to nearly an isolated point in the weakly relativistic regime, which can explain the quenching of EIT in bounded plasmas found in previous investigations.

20.
J Colloid Interface Sci ; 661: 690-699, 2024 May.
Article in English | MEDLINE | ID: mdl-38320405

ABSTRACT

The discovery of earth-abundant electrocatalysts to replace platinum and iridium for overall water splitting is a crucial step in reducing the cost of green hydrogen production. Transition metal phosphides have drawn wide attention due to their non-toxicity, good chemical stability, low cost, and stable catalytic activity in alkaline electrolytes. We report a three-dimensional flower-like structure composed of core-shell nanoneedles as catalysts, in which CeO2 is introduced on the surface of nickel cobalt bimetallic phosphide through electrodeposition. And X-ray photoelectron spectroscopy testing and DFT calculations show electron coupling and transfer between CeO2 and CoP3, thereby modulating the electronic structure of the catalyst surface and reducing the adsorption energy of H atoms during the catalytic process, resulting in enhanced catalytic activity. In 1 M KOH, it exhibits a low overpotential of 109 and 296 mV to achieve the current density of 50 mA cm-2 for HER and OER, respectively. When used as both cathode and anode as a bifunctional catalyst, a voltage of only 1.77 V is required to achieve a current density of 50 mA cm-2, demonstrating great industrial potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...