Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2403108, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748715

ABSTRACT

Non-Hermitian skin effect (NHSE) is one of the most fundamental phenomena in non-Hermitian physics. It is established that 1D NHSE originates from the nontrivial spectral winding topology. However, the topological origin behind the higher-dimensional NHSE remains unclear, which poses a substantial challenge in constructing and manipulating high-dimensional NHSEs. Here, an intuitive bottom-to-top scheme to construct high-dimensional NHSEs is proposed, through assembling multiple independent 1D NHSEs. Not only the elusive high-dimensional NHSEs can be effectively predicted from the well-defined 1D spectral winding topologies, but also the high-dimensional generalized Brillouin zones can be directly synthesized from the 1D counterparts. As examples, two 2D nonreciprocal acoustic metamaterials are experimentally implemented to demonstrate highly controllable multi-polar NHSEs and hybrid skin-topological effects, where the sound fields can be frequency-selectively localized at any desired corners and boundaries. These results offer a practicable strategy for engineering high-dimensional NHSEs, which can boost advanced applications such as selective filters and directional amplifiers.

2.
Phys Rev Lett ; 132(18): 186601, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759197

ABSTRACT

The emergent higher-order topological insulators significantly deepen our understanding of topological physics. Recently, the study has been extended to topological semimetals featuring gapless bulk band nodes. To date, higher-order nodal point and line semimetals have been successfully realized in different physical platforms. However, for the conceptually expected higher-order nodal surface semimetals, a concrete model has yet to be proposed, let alone experimentally observed. Here, we report an ingenious design route for constructing this unprecedented higher-order topological phase. The three-dimensional model, layer-stacked with a two-dimensional anisotropic Su-Schrieffer-Heeger lattice, exhibits appealing hinge arcs connecting the projected nodal surfaces. Experimentally, we realize this new topological phase in an acoustic metamaterial, and present unambiguous evidence for both the bulk nodal structure and hinge arc states, the two key manifestations of the higher-order nodal surface semimetal. Our findings can be extended to other classical systems such as photonic, elastic, and electric circuit systems, and open new possibilities for controlling waves.

3.
Nanoscale Res Lett ; 15(1): 46, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32076846

ABSTRACT

We propose a new method for regulating valley pseudomagnetoresistance in ballistic graphene-based valley field-effect transistors by taking into account the Y-shaped Kekulé lattice distortion and electric barrier. The device involves valley injection and valley detection by ferromagnetic-strain source and drain. The valley manipulation in the channel is achieved via the Y-shaped Kekulé lattice distortion and electric barrier. The central mechanism of these devices lies on Y-shaped Kekulé lattice distortion in graphene can induce a valley precession, thus controlling the valley orientation of channel electrons and hence the current collected at the drain. We found that the tuning external bias voltage makes the valley pseudomagnetoresistance oscillate between positive and negative values and colossal tunneling valley pseudomagnetoresistance of over 30,000% can be achieved. Our results suggest that the synergy of valleytronics and digital logics may provide new paradigms for valleytronic-based information processing and reversible computing.

SELECTION OF CITATIONS
SEARCH DETAIL
...