Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 7(1): 16888, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203857

ABSTRACT

This study was conducted to quantify the potential for CO2 fixation in the above-ground biomass of summer maize (Zea mays L.) under different tillage and residue retention treatments. The treatments were paired and included conventional tillage with straw removed (CT0), conventional tillage with straw retained (CTS), no-till with straw removed (NT0), no-till with straw retention (NTS), subsoiling with straw removed (SS0), and subsoiling with straw retained (SSS). The results indicated that NTS and SSS can enhance translocation of photosynthates to grains during the post-anthesis stage. SSS showed the highest total production (average of 7.8 Mg ha-1), carbon absorption by crop (Cd) (average of 9.2 Mg C ha-1), and total C absorption (Ct) (average of 40.4 Mg C ha-1); and NTS showed the highest contribution of post-anthesis dry matter translocation to grain yield (average of 74%). Higher CO2 emission intensity and CO2 fixation efficiency (CFE) were observed for straw retention treatments. In comparison with CTS, the mean CFE (%) over four years increased by 26.3, 19.0, 16.5, and 9.4 for NT0, SS0, NTS, and SSS, respectively. Thus, SSS and NTS systems offer the best options for removing CO2 from the atmosphere while enhancing crop productivity of summer maize in the North China Plain.


Subject(s)
Agriculture/methods , Biomass , Carbon Dioxide/metabolism , Zea mays/metabolism , Carbon Cycle , Carbon Dioxide/chemistry , Soil/chemistry , Zea mays/growth & development
2.
Ying Yong Sheng Tai Xue Bao ; 26(6): 1765-71, 2015 Jun.
Article in Chinese | MEDLINE | ID: mdl-26572030

ABSTRACT

To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.


Subject(s)
Agriculture/methods , Soil Microbiology , Soil/chemistry , Triticum , Zea mays , Biomass , Carbon/analysis , Carbon Dioxide/analysis , Recycling
3.
PLoS One ; 8(9): e73450, 2013.
Article in English | MEDLINE | ID: mdl-24019923

ABSTRACT

Appropriate tillage plays an important role in mitigating the emissions of greenhouse gases (GHG) in regions with higher crop yields, but the emission situations of some reduced tillage systems such as subsoiling, harrow tillage and rotary tillage are not comprehensively studied. The objective of this study was to evaluate the emission characteristics of GHG (CH4 and N2O) under four reduced tillage systems from October 2007 to August 2009 based on a 10-yr tillage experiment in the North China Plain, which included no-tillage (NT) and three reduced tillage systems of subsoil tillage (ST), harrow tillage (HT) and rotary tillage (RT), with the conventional tillage (CT) as the control. The soil under the five tillage systems was an absorption sink for CH4 and an emission source for N2O. The soil temperature positive impacted on the CH4 absorption by the soils of different tillage systems, while a significant negative correlation was observed between the absorption and soil moisture. The main driving factor for increased N2O emission was not the soil temperature but the soil moisture and the content of nitrate. In the two rotation cycle of wheat-maize system (10/2007-10/2008 and 10/2008-10/2009), averaged cumulative uptake fluxes of CH4 under CT, ST, HT, RT and NT systems were approximately 1.67, 1.72, 1.63, 1.77 and 1.17 t ha(-1) year(-1), respectively, and meanwhile, approximately 4.43, 4.38, 4.47, 4.30 and 4.61 t ha(-1) year(-1) of N2O were emitted from soil of these systems, respectively. Moreover, they also gained 33.73, 34.63, 32.62, 34.56 and 27.54 t ha(-1) yields during two crop-rotation periods, respectively. Based on these comparisons, the rotary tillage and subsoiling mitigated the emissions of CH4 and N2O as well as improving crop productivity of a wheat-maize cropping system.


Subject(s)
Crops, Agricultural/growth & development , Gases/analysis , Greenhouse Effect , Triticum/growth & development , Zea mays/growth & development , Methane/analysis , Nitrogen Oxides/analysis , Seasons , Soil , Temperature , Water
4.
Ying Yong Sheng Tai Xue Bao ; 24(5): 1374-80, 2013 May.
Article in Chinese | MEDLINE | ID: mdl-24015558

ABSTRACT

By using static chamber-TGC method, an in situ observation was conducted in a 10-year conservation tillage winter wheat field to study the effects of different maize straw-returning modes on the soil respiration. The soil respiration had a significant positive correlation with the stubble height of maize straw, and two peaks were observed in wheat growth period. Under no tillage and no straw-returning, the soil respiration was 72.5% of that under no tillage with all straw-returning, and the soil respiration under conventional tillage and no straw- returning was 76.5% of that under conventional tillage with all straw-returning. The soil respiration was significantly positively correlated with the soil temperature and soil organic carbon at 20 cm depth, but no significant correlation with the soil organic carbon at 40 cm depth. A correlation was also observed between the soil respiration and soil moisture. The diurnal soil respiration in the treatments of all straw-returning presented a single-peak curve, with the peak at 18:00. There was a similar variation trend of soil temperature and soil respiration at the depth of 20 cm. Among the treatments of different straw-returning amounts, straw-returning with the stubble of 1 m height could reduce the soil respiration significantly, being a reasonable straw-returning mode.


Subject(s)
Agriculture/methods , Plant Stems/chemistry , Soil/chemistry , Triticum/growth & development , Zea mays/chemistry , Carbon/analysis , Carbon Dioxide/analysis , Refuse Disposal/methods
5.
Plant Physiol Biochem ; 70: 69-80, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23770596

ABSTRACT

This study investigated changes in leaf abscisic acid (ABA) concentrations and grain ABA concentrations in two maize cultivars and analyzed the following relationships under different water/nitrogen treatments: leaf ABA concentrations and photosynthetic parameters; leaf ABA concentrations and grain ABA concentrations; leaf/grain ABA concentrations and grain-filling parameters; and aldehyde oxidase (AO, EC 1.2.3.1) activities and ABA concentrations. The ear leaf average AO activities and ABA concentrations were lower in the controlled release urea treatments compared with the conventional urea treatments. The average AO activities in the grains were higher in the controlled release urea treatments, and the ABA concentrations were significantly increased at 11-30 DAF. The Pn and ABA concentrations in ear leaves were negatively correlated. And the Gmean were positively correlated with the grain ABA concentrations at 11-30 DAF and negatively correlated with the leaf ABA concentrations at 20 and 40-50 DAF. The grain ABA concentrations and leaf ABA concentrations were positively correlated. Thus, the Gmean were closely related to the AO activities and to the ear leaf and grain ABA concentrations. As compared to other treatments, the subsoiling and controlled release urea treatment promoted the uptake of water and nitrogen by maize, increased the photosynthetic capacity of the ear leaves, increased the grain-filling rate, and improved the movement of photosynthetic assimilates toward the developing grains. In the cultivar Z958, higher ABA concentrations in grains at 11-30 DAF and lower ABA concentrations in ear leaves during the late grain-filling stage, resulted in higher grain-filling rate and increased accumulation of photosynthetic products (relative to the cultivar D3).


Subject(s)
Abscisic Acid/metabolism , Aldehyde Oxidase/metabolism , Nitrogen , Photosynthesis , Plant Structures/metabolism , Water , Zea mays/metabolism , Adaptation, Physiological , Fertilizers , Flowers , Plant Development , Plant Growth Regulators/metabolism , Plant Leaves/metabolism , Seeds/metabolism , Species Specificity , Urea/metabolism , Zea mays/physiology
6.
PLoS One ; 7(12): e51206, 2012.
Article in English | MEDLINE | ID: mdl-23236456

ABSTRACT

The objective of this study was to quantify soil methane (CH(4)) and nitrous oxide (N(2)O) emissions when converting from minimum and no-tillage systems to subsoiling (tilled soil to a depth of 40 cm to 45 cm) in the North China Plain. The relationships between CH(4) and N(2)O flux and soil temperature, moisture, NH(4) (+)-N, organic carbon (SOC) and pH were investigated over 18 months using a split-plot design. The soil absorption of CH(4) appeared to increase after conversion from no-tillage (NT) to subsoiling (NTS), from harrow tillage (HT) to subsoiling (HTS) and from rotary tillage (RT) to subsoiling (RTS). N(2)O emissions also increased after conversion. Furthermore, after conversion to subsoiling, the combined global warming potential (GWP) of CH(4) and N(2)O increased by approximately 0.05 kg CO(2) ha(-1) for HTS, 0.02 kg CO(2) ha(-1) for RTS and 0.23 kg CO(2) ha(-1) for NTS. Soil temperature, moisture, SOC, NH(4) (+)-N and pH also changed after conversion to subsoiling. These changes were correlated with CH(4) uptake and N(2)O emissions. However, there was no significant correlation between N(2)O emissions and soil temperature in this study. The grain yields of wheat improved after conversion to subsoiling. Under HTS, RTS and NTS, the average grain yield was elevated by approximately 42.5%, 27.8% and 60.3% respectively. Our findings indicate that RTS and HTS would be ideal rotation tillage systems to balance GWP decreases and grain yield improvements in the North China Plain region.


Subject(s)
Agriculture/methods , Greenhouse Effect , Methane/analysis , Nitrous Oxide/analysis , Soil/analysis , Triticum/growth & development , Biomass , Carbon/analysis , China , Hydrogen-Ion Concentration , Temperature , Water/analysis
7.
Ying Yong Sheng Tai Xue Bao ; 22(5): 1183-8, 2011 May.
Article in Chinese | MEDLINE | ID: mdl-21812292

ABSTRACT

Taking a long-term (since 2004) straw-returning winter wheat field as the object, an investigation was made in the wheat growth seasons of 2008-2009 and 2009-2010 to study the effects of different tillage methods (rotary tillage, harrow tillage, no-tillage, subsoil tillage, and conventional tillage) and weed management on the soil water and organic carbon contents. No matter retaining or removing weeds, the weed density under subsoil tillage and no-tillage was much higher than that under rotary tillage, harrow tillage, and conventional tillage. From the jointing to the milking stage of winter wheat, retaining definite amounts of weeds, no matter which tillage method was adopted, could significantly increase the 0-20 cm soil water content, suggesting the soil water conservation effect of retaining weeds. Retaining weeds only increased the soil organic carbon content in 0-20 cm layer at jointing stage. At heading and milking stages, the soil organic carbon contents in 0-20, 20-40, and 40-60 cm layers were lower under weed retaining than under weed removal. Under the conditions of weed removal, the grain yield under subsoil tillage increased significantly, compared with that under the other four tillage methods. Under the conditions of weed retaining, the grain yield was the highest under rotary tillage, and the lowest under conventional tillage.


Subject(s)
Agriculture/methods , Carbon/analysis , Soil/analysis , Triticum/growth & development , Water/analysis , Organic Chemicals/analysis , Poaceae/growth & development , Weed Control/methods
8.
Ying Yong Sheng Tai Xue Bao ; 21(2): 373-8, 2010 Feb.
Article in Chinese | MEDLINE | ID: mdl-20462008

ABSTRACT

A two growth seasons experiment was conducted to study the effects of different tillage methods, straw-returning, and their interaction on the dynamic change of organic carbon content in 0-20 cm soil layer during the whole growth period of winter wheat. An obvious change was observed in the soil organic carbon content. Treatments with straw-returning had higher soil organic carbon content than treatments with no straw-returning, and conservation tillage induced higher soil organic carbon content than conventional tillage. In all treatments except conventional tillage, the organic carbon content in 0-10 cm soil layer was higher than that in 10-20 cm soil layer. In treatments with straw-returning, the organic carbon content in 0-10 cm soil layer decreased in order of deep soiling (PS) > rotary tillage (PR) > no tillage (PZ) > normal ploughing (PH) > conventional tillage (PC), while that in 10-20 cm soil layer was PC > PS > PR > PH > PZ, suggesting that conservation tillage could improve the organic carbon content in 0-10 cm soil layer. Multi factor variance analysis showed that tillage method, straw-returning, and their interaction had significant effects on the organic carbon content in 0-20 cm soil layer at various growth stages of winter wheat.


Subject(s)
Agriculture/methods , Carbon/analysis , Plant Stems/chemistry , Soil/analysis , Triticum/growth & development , Analysis of Variance , Organic Chemicals/analysis
9.
Ying Yong Sheng Tai Xue Bao ; 19(5): 981-5, 2008 May.
Article in Chinese | MEDLINE | ID: mdl-18655581

ABSTRACT

A field experiment was conducted to study the effects of maize-peanut intercropping on the economic yield of the two crops and the light response of their functional leaves' photosynthesis. The results showed that maize-peanut intercropping had an obvious yield advantage, with the total economic yield being 2,896 kg hm(-2) in 2004 and 2,894 kg hm(-2) in 2005, and enhanced the land utilization rate by 14%-17%. For maize's functional leaves, the intercropping enhanced their light saturation point, compensation point, and photosynthetic rate under strong light; while for peanut's functional leaves, it reduced their light saturation point and compensation point but enhanced the apparent quantum yield of photosynthesis and photosynthetic rate under weak light, indicating that maize-peanut intercropping enhanced the utilization efficiency of strong light by maize and that of weak light by peanut, making this intercropping system present an obvious yield advantage.


Subject(s)
Arachis/growth & development , Biomass , Photosynthesis/physiology , Zea mays/growth & development , Agriculture/methods , Arachis/physiology , Ecosystem , Photosynthesis/radiation effects , Sunlight , Zea mays/physiology
10.
J Plant Physiol ; 165(14): 1455-65, 2008 Sep 29.
Article in English | MEDLINE | ID: mdl-18313170

ABSTRACT

A sand culture experiment was conducted to answer the question whether or not exogenous KNO(3) can alleviate adverse effects of salt stress in winter wheat by monitoring plant growth, K(+)/Na(+) accumulation and the activity of some antioxidant enzymes. Seeds of two wheat cultivars (CVs), DK961 (salt-tolerant) and JN17 (salt-sensitive), were planted in sandboxes and controls germinated and raised with Hoagland nutrient solution (6 mM KNO(3), no NaCl). Experimental seeds were exposed to seven modified Hoagland solutions containing increased levels of KNO(3) (11, 16, 21 mM) or 100 mM NaCl in combination with the four KNO(3) concentrations (6, 11, 16 and 21 mM). Plants were harvested 30 d after imbibition, with controls approximately 22 cm in height. Both CVs showed significant reduction in plant height, root length and dry weight of shoots and roots under KNO(3) or NaCl stress. However, the combination of increased KNO(3) and NaCl alleviated symptoms of the individual salt stresses by improving growth of shoots and roots, reducing electrolyte leakage, malondialdehyde and soluble sugar contents and enhancing the activities of antioxidant enzymes. The salt-tolerant cultivar accumulated more K(+) in both shoots and roots compared with the higher Na(+) accumulation typical for the salt-sensitive cultivar. Soluble sugar content and activities of antioxidant enzymes were found to be more stable in the salt-tolerant cultivar. Our findings suggest that the optimal K(+)/Na(+) ratio of the nutrient solution should be 16:100 for both the salt-tolerant and the salt-sensitive cultivar under the experimental conditions used, and that the alleviation of NaCl stress symptoms through simultaneously applied elevated KNO(3) was more effective in the salt-tolerant than in the salt-sensitive cultivar.


Subject(s)
Nitrates/pharmacology , Potassium Compounds/pharmacology , Salt Tolerance/drug effects , Seasons , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Triticum/drug effects , Triticum/physiology , Antioxidants/metabolism , Biomass , Carotenoids/metabolism , Cell Membrane Permeability/drug effects , Chlorophyll/metabolism , Electrolytes , Ions , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/enzymology , Polysaccharides/metabolism , Potassium/metabolism , Sodium/metabolism , Solubility/drug effects , Triticum/cytology , Triticum/enzymology , Water
11.
Ying Yong Sheng Tai Xue Bao ; 19(11): 2490-6, 2008 Nov.
Article in Chinese | MEDLINE | ID: mdl-19238852

ABSTRACT

In order to understand the relationships between CH4 fluxes and its affecting factors in a wheat field with conservation tillage, the CH4 fluxes in two wheat fields, one with conservation tillage and the another with conventional tillage, were measured in situ by static chamber-GC method, with soil temperature and soil moisture and inorganic nitrogen contents determined at the same time. The results showed that these two fields had an obvious and similar seasonal variation pattern of CH4 fluxes, but the average and seasonal CH4 absorption fluxes differed significantly. In the growth period of wheat, the fields were the sink of CH4, and the CH4 absorption fluxes was in the order of conventional tillage with no straw returning (CN) > conventional tillage with straw returning (CS) > subsoiling with straw returning (PS) > harrowing with straw returning (HS) > rotary tillage with straw returning (RS) > no tillage with straw covered (NS). Comparing with conventional tillage, conservation tillage reduced the CH4 absorption fluxes. In conservation tillage, the CH4 absorption fluxes was positively correlated with soil temperature but negatively correlated with soil moisture content; while in conventional tillage, the CH4 absorption fluxes had no significant correlations with the two factors. In all treatments, there was a significant negative correlation between CH4 absorption fluxes and soil NH4+ -N content.


Subject(s)
Agriculture/methods , Air Pollutants/metabolism , Methane/metabolism , Soil/analysis , Triticum/growth & development , Absorption , Air Pollutants/analysis , Ecosystem , Environmental Monitoring , Methane/analysis
12.
Ying Yong Sheng Tai Xue Bao ; 17(10): 1866-70, 2006 Oct.
Article in Chinese | MEDLINE | ID: mdl-17209384

ABSTRACT

The study with three wheat cultivars grown in two places of Shandong Province showed that the nitrate reductase (NR) and glutamine synthetase (GS) activities in flag leaf and the GS activity in grain were in the sequence of Jimai 20 > Youmai 3 > PH971942, and higher in Longkou than in Taian. The strong gluten wheat cultivars in Longkou had better grain qualities than those in Taian. There were significant correlations between the environmental factors at grain-filling stage and the grain qualities and enzyme activities of wheat. Higher temperature, moderate drought and less sunshine at grain filling stage were benefit to the grain qualities. The protein content of grain was positively correlated with the NR and GS activities in flag leaf for the medium and strong gluten wheat cultivars in Longkou and for the medium gluten wheat cultivars in Taian. Wheat cultivars for different use needed different environmental conditions, while suitable environmental conditions could promote the enzyme activities in nitrogen metabolism of wheat, and thus, improve the qualities of wheat grain.


Subject(s)
Glutamate-Ammonia Ligase/metabolism , Nitrate Reductase/metabolism , Nitrogen/metabolism , Triticum/enzymology , Triticum/growth & development , Biomass , Edible Grain/growth & development , Environment , Quality Control , Seasons , Triticum/metabolism
13.
Ying Yong Sheng Tai Xue Bao ; 17(12): 2332-6, 2006 Dec.
Article in Chinese | MEDLINE | ID: mdl-17330475

ABSTRACT

The study on the effects of N application rate on the N utilization, yield and quality of mono- and inter-cropped spring- and summer-sown maize showed that under both of the cropping systems, the N uptake, grain yield, dry matter accumulation, and grain protein yield of spring- and summer-sown maize were increased with increasing N application rate. Due to the same demand of N nutrition, there was a competition between spring- and summersown maize in inter-cropping system, especially under low level N application. Spring-sown maize was of superiority in inter-cropping system, but its N uptake was still less than that in mono-cropping system. The competition could be offset by increasing N application. When N application increased from 187.5 kg x hm(-2) to 375 kg x hm(-2), the average increment of dry matter yield of mono-cropped spring- and summer-sown maize was 1.717 kg x kg(-1) N, while that of inter-cropped spring- and summer-sown maize was 12.179 kg x kg(-1) N. The average increment of protein yield of mono- and inter-cropped spring- and summer-sown maize was 0.305 kg x kg(-1) N and 1.829 kg x kg(-1) N, respectively, with the land equivalent ratio increased from 1.59 to 1.91. Compared with mono-cropping, inter-cropping spring- and summer-sown maize could get higher yield and higher quality, and this effect was increased with increasing N application rate.


Subject(s)
Agriculture/methods , Biomass , Fertilizers , Nitrogen/pharmacology , Zea mays/growth & development , Quality Control , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...