Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916977

ABSTRACT

This paper assesses the impact of adopting carbon- or glass-fiber-reinforced polymer (CFRP or GFRP) instead of steel rebars on the redistribution of moments in prestressed concrete beams (PCBs) with external CFRP tendons. A numerical program is introduced, and numerical simulations are performed on two-span continuous beams with steel, CFRP or GFRP rebars of various areas, i.e., Ar2 = 360-3560 mm2, and Ar1/Ar2 = 1.5, where Ar1 and Ar2 are areas of tensile rebars over the positive and negative moment zones, respectively. The results show the moment redistribution is contributed by concrete cracking only for the beams with fiber-reinforced polymer (FRP) rebars, and by concrete cracking and steel yielding for the beams with steel rebars. As a result, the use of FRP rebars leads to a substantially lower moment redistribution than in steel rebars. It is also demonstrated that Eurocode 2, CSA A23.3-04 and ACI 318-19 fail to reflect the rebar influence on moment redistribution in PCBs with external tendons. A simplified equation for the quantification of moment redistribution in externally PCBs with steel and FRP rebars is recommended, which yields accurate and conservative predictions.

2.
Polymers (Basel) ; 12(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255387

ABSTRACT

This study aimed at examining the feasibility of using fiber-reinforced polymer (FRP) rebars instead of steel ones in prestressed concrete beams (PCBs) with external FRP tendons. By applying an experimentally validated program, numerical tests were performed on simply supported PCBs, with investigated variables including rebars' type and area. Three types of rebars were considered, i.e., carbon, glass FRPs (CFRP, GFRP), and reinforcing steel. The ratio of tensile rebars ranged from 0.22% to 2.16%. The results indicated that the beams with CFRP rebars exhibited better crack mode and higher ultimate load than the beams with GFRP or steel rebars. GFRP rebars led to considerably higher ultimate deflection and tendon stress increment than steel rebars. In addition, several models for calculating the ultimate stress in unbonded tendons were assessed. An analytical model was also proposed to predict the tendon stress at ultimate and flexural strength in externally PCBs with steel and FRP rebars. The model predictions agreed well with the numerical results.

SELECTION OF CITATIONS
SEARCH DETAIL
...