Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 44(2): 1181-1190, 2023 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-36775640

ABSTRACT

With the introduction of the goal of carbon neutrality, the efficient resource recycling of municipal sludge has been given increasing attention. In order to scientifically evaluate the routes of sludge treatment and disposal from the perspective of carbon emissions, four typical routes were chosen for accounting the carbon emissions per ton for dry sludge (DS). Based on the Intergovernmental Panel on Climate Change (IPCC), combined with Chinese sludge characteristics, carbon emissions were divided into three types:the direct emissions, indirect emissions, and carbon offsets, and accounting boundaries were initiated at sludge thickening and ended at products or energies. The results showed that the total carbon emission of R4 (gravity thickening+thermal hydrolysis+anaerobic digestion+plate and frame filter pressing+transportation+land utilization) was 99.41 kg·t-1(calculated as CO2/DS, same below), which was the route with lowest carbon emissions. If the fugitive emission of CH4 from anaerobic digestion was avoided, the route (R4) could achieve carbon neutrality at this stage. Process units with larger carbon emissions should focus on optimization to reduce the carbon emissions, such as through thermal drying (1049.24 kg·t-1), deep dewatering (960.99 kg·t-1), sanitary landfill (786.24 kg·t-1), incineration (635.52 kg·t-1), aerobic composting (614.17 kg·t-1), and thermal hydrolysis (544.67 kg·t-1). The main carbon offsets were the incineration power generation (-1440.29 kg·t-1), CH4 collection of anaerobic digestion (-435.06 kg·t-1), land utilization (-415.83 kg·t-1), and building materials utilization (-169.75 kg·t-1). In summary, "anaerobic digestion and land utilization" has a great potential for carbon offsets, which should be advocated for as the widely used treatment.

2.
Oncol Rep ; 41(4): 2089-2102, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30816528

ABSTRACT

Papillary renal cell carcinoma (PRCC) accounts for 15­20% of all kidney neoplasms and continually attracts attention due to the increase in the incidents in which it occurs. The molecular mechanism of PRCC remains unclear and the efficacy of drugs that treat PRCC lacks sufficient evidence in clinical trials. Therefore, it is necessary to investigate the underlying mechanism in the development of PRCC and identify additional potential anti­PRCC drugs for its treatment. The differently expressed genes (DEGs) of PRCC were identified, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses for functional annotation. Then, potential drugs for PRCC treatment were predicted by Connectivity Map (Cmap) based on DEGs. Furthermore, the latent function of query drugs in PRCC was explored by integrating drug­target, drug­pathway and drug­protein interactions. In total, 627 genes were screened as DEGs, and these DEGs were annotated using KEGG pathway analyses and were clearly associated with the complement and coagulation cascades, amongst others. Then, 60 candidate drugs, as predicted based on DEGs, were obtained from the Cmap database. Vorinostat was considered as the most promising drug for detailed discussion. Following protein­protein interaction (PPI) analysis and molecular docking, vorinostat was observed to interact with C3 and ANXN1 proteins, which are the upregulated hub genes and may serve as oncologic therapeutic targets in PRCC. Among the top 20 metabolic pathways, several significant pathways, such as complement and coagulation cascades and cell adhesion molecules, may greatly contribute to the development and progression of PRCC. Following the performance of the PPI network and molecular docking tests, vorinostat exhibited a considerable and promising application in PRCC treatment by targeting C3 and ANXN1.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Gene Expression Regulation, Neoplastic/drug effects , Kidney Neoplasms/genetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/chemistry , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/genetics , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Molecular Docking Simulation , Molecular Targeted Therapy/methods , Protein Interaction Mapping , Protein Interaction Maps/drug effects , Protein Interaction Maps/genetics , Vorinostat/chemistry , Vorinostat/pharmacology , Vorinostat/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...