Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.095
Filter
1.
J Hazard Mater ; 474: 134787, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823101

ABSTRACT

The developmental toxicity effects of neonicotinoid pesticides such as clothianidin have not been fully explored in agricultural applications. This is particularly noteworthy because such pesticides significantly impact the survival rates of invertebrates, with arthropod larvae being particularly vulnerable. This study aimed to address this research gap by specifically investigating the toxicological effects of clothianidin on the developmental stages of the larvae of the economically important aquaculture species Penaeus vannamei. In these experiments, shrimp eggs were exposed to seawater containing different concentrations of clothianidin beginning at N1, and each phase was observed and analyzed to determine its toxic impact on larval development. These results revealed that clothianidin induces an increase in deformity rates and triggers abnormal cell apoptosis. It also significantly reduced survival rates and markedly decreased body length and heart rate in the later stages of larval development (P3). Transcriptomic analysis revealed disruptions in larval DNA integrity, protein synthesis, and signal transduction caused by clothianidin. To survive prolonged exposure, larvae may attempt to maintain their viability by repairing cell structures and enhancing signal transduction mechanisms. This study offers the first empirical evidence of the toxicity of clothianidin to arthropod larvae, underscoring the impact of environmental pollution on aquatic health.

2.
Neurochem Res ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824460

ABSTRACT

Patients suffering from hepatic ischemia-reperfusion injury (HIRI) frequently exhibit postoperative cognitive deficits. Our previous observations have emphasized the diurnal variation in hepatic ischemia-reperfusion injury-induced cognitive impairment, in which gut microbiota-associated hippocampal lipid metabolism plays an important role. Herein, we further investigated the molecular mechanisms involved in the process. Hepatic ischemia-reperfusion surgery was performed under morning (ZT0, 08:00) and evening (ZT12, 20:00). Fecal microbiota transplantation was used to associate HIRI model with pseudo-germ-free mice. The novel object recognition test and Y-maze test were used to assess cognitive function. 16S rRNA gene sequencing and analysis were used for microbial analysis. Western blotting was used for hippocampal protein analysis. Compared with the ZT0-HIRI group, ZT12-HIRI mice showed learning and short term memory impairment, accompanied by down-regulated expression of hippocampal CB1R, but not CB2R. Both gut microbiota composition and microbiota metabolites were significantly different in ZT12-HIRI mice compared with ZT0-HIRI. Fecal microbiota transplantation from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior and down-regulated hippocampal CB1R and ß-arrestin1. Intraperitoneal administration of CB1R inhibitor AM251 (1 mg/kg) down-regulated hippocampal CB1R and caused cognitive impairment in ZT0-HIRI mice. And intraperitoneal administration of CB1R agonist WIN 55,212-2 (1 mg/kg) up-regulated hippocampal CB1R and improved cognitive impairment in ZT12-HIRI mice. In summary, the results suggest that gut microbiota may regulate the diurnal variation of HIRI-induced cognitive function by interfering with hippocampal CB1R.

3.
Front Oncol ; 14: 1418905, 2024.
Article in English | MEDLINE | ID: mdl-38841171

ABSTRACT

[This corrects the article DOI: 10.3389/fonc.2024.1367907.].

4.
Article in English | MEDLINE | ID: mdl-38829385

ABSTRACT

Garlic exhibits hypolipidemic, hypoglycemic, and cardiovascular benefits. The inconsistent results of garlic preparations on adipogenesis have caused more confusion in the public and academia. The compounds responsible for the anti-adipogenesis effect of garlic remain unknown. The present study aimed to verify the real anti-adipogenesis and anti-obesity component in garlic and explored its possible effects in metabolic syndrome. We verified the real anti-adipogenesis and anti-obesity components of garlic in 3T3-L1 preadipocytes and a 10-week-high fat diet (HFD)-induced obese mice. In vitro, two water-soluble and four typical lipid-soluble compounds of garlic were tested for their anti-adipogenesis. Then, the water-soluble compound, alliin, and two processing methods produced garlic oils, were evaluated in vivo study. Mice received oral administration of alliin (25 mg/kg) and garlic oils (15 mg/kg) daily for 8 weeks. Serum lipids, parameters of obesity, and indicators involved in regulating glycolipid metabolism were examined. Our findings confirmed that both water-soluble and lipid-soluble organosulfur compounds of garlic contributed to garlic's anti-adipogenesis effect, in which water-soluble sulfides, especially alliin, exhibited greater potency. Alliin possessed potent effects of anti-obesity and improvement in glucose and lipid metabolism in HFD-induced obese mice. Alliin mediated these effects partly attributed to its modulation of enzymatic activities within glycolipid metabolism and activating PPARγ signaling pathway. In contrast to odorous lipid-soluble sulfides, alliin is odorless, stable, and safe, and is an ideal nutraceutical or even medicinal candidates for the treatment of metabolic diseases. Alliin could be used to standardize the quality of garlic products.

5.
Asia Pac Allergy ; 14(2): 45-55, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827256

ABSTRACT

Background: The diagnosis of allergic rhinitis is mainly based on the typical medical history, clinical manifestations, and corresponding allergen test results of the patients. However, there are often clinical inconsistencies among the 3. Objective: To study the clinical characteristics of patients with allergic rhinitis from both subjective and objective aspects to determine the correlations between the quantitative assessment outcomes of subjective and objective indicators. Methods: A total of 111 patients with allergic rhinitis who visited our outpatient clinic from June 2022 to December 2022 were selected. The 22-item sino-nasal outcome test (SNOT-22) and the visual analog scale (VAS) for the severity of the disease were used to score the subjective indicators of allergic rhinitis. The objective indicators of allergic rhinitis were evaluated by serum inhalant allergens immunoglobulin E test, nasal endoscopy modified Lund-Kennedy (MLK) scoring method, and acoustic rhinometry. Results: SNOT-22 score, total VAS score for symptoms, and the VAS score for nasal itching were positively correlated with the number of positive allergens (r = 0.266, P = 0.005, r = 0.576, P < 0.001, and r = 0.271, P = 0.004, respectively). No differences were found in all subjective indicators scores between the total immunoglobulin E positive and negative groups (P > 0.05). SNOT-22 score, total VAS score for symptoms, and the VAS score for nasal congestion were positively correlated with MLK total score of nasal endoscopy (r = 0.343, P < 0.001, r = 0.438, P < 0.001, and r = 0.225, P = 0.018, respectively). Parameters of acoustic rhinometry were not correlated with the subjective indicators scores of allergic rhinitis (P > 0.05). Conclusion: A multifaceted quantitative assessment of allergic rhinitis using a combination of subjective and objective methods can help physicians make an accurate diagnosis and create reasonable treatment plans.

6.
Heliyon ; 10(11): e31700, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828301

ABSTRACT

Research on the positive impacts of uncertainty has primarily focused on promotional activities, with little research in other situations. This study applied the concept of uncertainty to the context of experience consumption, Discovering there is certainty of experience and uncertainty of experience in the context of consumption, The purpose is to study the differences in the mechanism of action of different types of consumer experience. In studyⅠ, 239 valid questionnaires on the mobile app consumption experiences were collected and their data were analyzed using structural equation modeling (SEM). Study 2 collected 160 valid questionnaires on consumer experience in physical stores and analyzed the questionnaire data using partial least squares (PLS-SEM). study finding in the certainty of experience context, standardized interaction relies on product interaction and scene interaction to transmit experience material information, and reduce consumers' commodity service perception uncertainty, resulting in a satisfaction experience; in the uncertainty of experience context, personalized interaction relies on user-enterprise interaction and user-to-user interaction to unleash the subjectivity and creativity of experience participants, and increase consumers' experience process perception uncertainty, resulting in the realization a surprise experience. The research findings provide important practical guidance for enterprises to establish differentiated experience strategies and gain long-term competitive advantages.

7.
New Phytol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831647

ABSTRACT

Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.

8.
J Phys Chem A ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832647

ABSTRACT

The interactions between a magnetic tip and local spin impurities initiate unconventional Kondo phenomena, such as asymmetric suppression or even splitting of the Kondo peak. However, a lack of realistic theoretical models and comprehensive explanations for this phenomenon persists due to the complexity of the interactions. This research employs a joint method of density functional theory (DFT) and hierarchical equation of motion (HEOM) to simulate and contrast the modulation of the spin state and Kondo behavior in the Fe/Cu(100) system with two distinct magnetic tips. A cobalt tip, possessing a larger magnetic moment, incites greater atomic displacement of the iron atom, more notable alterations in electronic structure, and enhanced charge transfer with the environment compared with the control process utilizing a nickel tip. Furthermore, the Kondo resonance undergoes asymmetric splitting as a result of the ferromagnetic correlation between the iron atom and the magnetic tip. The Co tip's higher spin polarization results in a wider spacing between the splitting peaks. This investigation underscores the precision of the DFT + HEOM approach in predicting complex quantum phenomena and explaining the underlying physical principles. This provides valuable theoretical support for developing more sophisticated quantum regulation experiments.

9.
iScience ; 27(6): 109847, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38840840

ABSTRACT

Camellia oleifera is an economically and medicinally valuable oilseed crop. Honeybee, the most abundant pollinator, rarely visits C. oleifera because of the toxic sugars in the nectar and pollen. These toxic sugars cannot be fully digested by honeybees and inhibit the process of synthesizing trehalose in honeybees. C. oleifera exhibits self-incompatibility, and its pollination heavily depends on Andrena camellia. However, the mechanism by which A. camellia digests toxic sugars in C. oleifera nectar and pollen remains unknown. Consequently, we identified and validated four single-copy genes (α-N-acetyl galactosamine-like, galactokinase, galactose-1-phosphate uridyltransferase, and UDP-galactose-4'-epimerase, abbreviated as NAGA-like, GALK, GALT, and GALE) essential for detoxifying toxic sugars in vitro. Then, we cloned the four genes into Escherichia coli, and expressed enzyme successfully degraded the toxic sugars. The phylogeny suggests that the genes were conserved and functionally diverged among the evolution. These results provide novel insights into pollinator detoxification during co-evolution.

10.
Front Microbiol ; 15: 1390331, 2024.
Article in English | MEDLINE | ID: mdl-38841064

ABSTRACT

This study investigated the effect of nitrogen application on the rhizosphere soil microenvironment of sunflower and clarified the relationship between ammonium assimilation and the microenvironment. In a field experiment high (HN, 190 kg/hm2), medium (MN, 120 kg/hm2) and low nitrogen (CK, 50 kg/hm2) treatments were made to replicate plots of sunflowers using drip irrigation. Metagenomic sequencing was used to analyze the community structure and functional genes involved in the ammonium assimilation pathway in rhizosphere soil. The findings indicated that glnA and gltB played a crucial role in the ammonium assimilation pathway in sunflower rhizosphere soil, with Actinobacteria and Proteobacteria being the primary contributors. Compared with CK treatment, the relative abundance of Actinobacteria increased by 15.57% under MN treatment, while the relative abundance decreased at flowering and maturation stages. Conversely, the relative abundance of Proteobacteria was 28.57 and 61.26% higher in the MN treatment during anthesis and maturation period, respectively, compared with the CK. Furthermore, during the bud stage and anthesis, the abundance of Actinobacteria, Proteobacteria, and their dominant species were influenced mainly by rhizosphere soil EC, ammonium nitrogen (NH4+-N), and nitrate nitrogen (NO3--N), whereas, at maturity, soil pH and NO3--N played a more significant role in shaping the community of ammonium-assimilating microorganisms. The MN treatment increased the root length density, surface area density, and root volume density of sunflower at the bud, flowering, and maturity stages compared to the CK. Moreover, root exudates such as oxalate and malate were positively correlated with the dominant species of Actinobacteria and Proteobacteria during anthesis and the maturation period. Under drip irrigation, applying 120 kg/hm2 of nitrogen to sunflowers effectively promoted the community structure of ammonium-assimilating microorganisms in rhizosphere soil and had a positive influence on the rhizosphere soil microenvironment and sunflower root growth.

12.
Analyst ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847269

ABSTRACT

Antimony-based electrodes are widely used in various fields for pH detection due to their low cost. However, their application in the marine environment is significantly hampered by the significant potential drift observed in seawater pH measurements. This study focuses on enhancing the stability of a pure antimony electrode by doping various amounts of copper without compromising its pH response. A series of electrochemical tests demonstrated that the fabricated alloy electrodes exhibited excellent pH response characteristics, including sensitivity, ion selectivity, response time, reversibility, and temperature coefficients. Moreover, the alloy electrodes were more resistant to corrosion than the pure antimony electrode, thereby guaranteeing the stability. Notably, the alloy electrodes containing 63 at% and 70 at% antimony exhibited superior electrochemical characteristics. The surface analysis elucidated that the alloy electrode had reduced oxidation, surface cracks and antimony peeling compared to the pure antimony electrode. Furthermore, the prepared alloy electrodes exhibited excellent pH response and stability in simulated high-salinity seawater and real seawater. The above results highlight that doping cheap copper into antimony can improve the electrode stability by enhancing the corrosion resistance and slowing down the oxidation rate, thus enabling reliable long-time operation in a relatively stable state. These findings provide experimental support for developing novel pH electrodes based on non-noble metals for use in challenging environments such as seawater.

13.
Heliyon ; 10(11): e31778, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845937

ABSTRACT

Core 1 ß 1,3-galactosyltransferase 1 (C1GALT1) acts as an important glycosyltransferase in the occurrence and development of tumor glycosylation. However, the regulatory mechanisms of C1GALT1 in thyroid cancer (TC) is still unclear. In this study, we discovered that the expression level of C1GALT1 was significantly increased in thyroid adenocarcinoma tissues and cell lines (p < 0.01). Meanwhile, gene silencing of C1GALT1 inhibited the proliferation (CCK-8 assay), migration (wound healing), and invasion (Transwell) of TC cells (p < 0.05). Further investigation indicated that miR-141-3p had a negative correlation with C1GALT1 and suppressed cancer carcinogenesis in TC cells. Moreover, we first found that glucose transporter 1 (GLUT1) was a downstream element of C1GALT1 and was positively correlated with C1GALT1 levels in TC. The GLUT1 could reverse the inhibitory effects of siRNA C1GALT1 on cell development (p < 0.05). These data suggest that the miR-141-3p/C1GALT1/GLUT1 axis plays an essential role during TC progression and may be a probable biomarker or therapeutic target for thyroid cancer patients.

14.
Food Chem ; 455: 139952, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38850968

ABSTRACT

Dendrobium officinale Kimura & Migo (D. officinale) has been widely used as Chinese medicine and functional food. In present study, the structural characteristics of anthocyanins in D. officinale were investigated by ultra-performance liquid chromatography with diode array detector (UPLC-DAD) and ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS/MS). Totally, 14 anthocyanins were detected and identified, and 13 of them were first reported in D. officinale. Results showed that the vast majority of anthocyanins had multi-glycosylated cyanidin core, with variable acylation pattern mainly comprising phenolic acids. The composition and content of anthocyanins in D. officinale stems with different cultivation modes and years have been compared. The anthocyanins showed potent antioxidant activity in terms of radicals scavenging capacity and reducing power, as well as superior α-amylase and α-glucosidase inhibitory activity. The results provided a complete profile of anthocyanins in D. officinale and laid a foundation for further utilizing them as functional foods.

15.
J Control Release ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851536

ABSTRACT

Glioma is an aggressive malignant brain tumor with a very poor prognosis for survival. The poor tumor targeting efficiency and tumor microenvironment penetration barrier also as troubles inhibited the effective glioma chemotherapy. Here, we design a core-shell structure cascade amplified hybrid catalytic nanopotentiators CFpAD with DM1 encapsulated to overcome the glioma therapeutic obstacles. NIR laser-based BBB penetrating enhances the tumor accumulation of CFpAD. When CFpAD, as the cascade amplified drug, is treated on the cancer cells, the bomb-like CFpAD releases gold nanoparticles as glucose oxidase (GOx) and ferric oxide nanoparticles (FNPs) as peroxides (POx) after blasting, producing ROS via a cascade amplification for tumor cell apoptosis. Gold nanoparticles can rest CAFs and reduce ECM secretion, achieving deep penetration of CFpAD. Moreover, CFpAD also cuts off the nutritional supply of the tumor, reduces the pH value, and releases free radicals to destroy the cancer. The glioma cell viability was significantly decreased through DNA damage and ROS aggregation due to the DM1-based chemotherapy synergistically combined with interventional photothermal therapy (IPTT) and radiotherapy (RT). This domino cascade amplified loop, combined with starvation therapy with IPTT and RT, has good tumor penetration and outstanding antitumor efficacy, and is a promising glioma treatment system.

16.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766131

ABSTRACT

Obesity is an epidemic with myriad health effects, but little is understood regarding individual obese phenotypes and how they may respond to therapy. Epigenetic changes associated with obesity have been detected in blood, liver, pancreas, and adipose tissues. Previous work found that dietary glucose hyperabsorption occurs in some obese subjects, but detailed transcriptional or epigenomic features of the intestine associated with this phenotype are unknown. This study evaluated differentially expressed genes and relative chromatin accessibility in intestinal organoids established from donors classified as lean, obese, or obese hyperabsorptive by body mass index and glucose transport assays. Transcriptomic analysis indicated that obese hyperabsorptive subjects have significantly upregulated dietary nutrient absorption proteins and downregulated type I interferon targets. Chromatin accessibility and transcription factor footprinting suggested that enhanced binding of HNF4G promotes the obese hyperabsorption phenotype. Quantitative PCR assessment in a larger subject cohort suggested that intestinal epithelial expression of CUBN, GIP, and SLC2A5 have high correlation with hyperabsorption. The obese hyperabsorption phenotype is characterized by transcriptional changes that support increased nutrient uptake and may be driven by differentially accessible chromatin. Recognizing unique intestinal phenotypes in obesity provides new perspective in considering therapeutic targets and options to manage the disease.

17.
Mol Ther Nucleic Acids ; 35(2): 102187, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38706631

ABSTRACT

Long non-coding RNAs (lncRNAs) are important factors involved in biological regulatory networks. Accurately predicting lncRNA-protein interactions (LPIs) is vital for clarifying lncRNA's functions and pathogenic mechanisms. Existing deep learning models have yet to yield satisfactory results in LPI prediction. Recently, graph autoencoders (GAEs) have seen rapid development, excelling in tasks like link prediction and node classification. We employed GAE technology for LPI prediction, devising the FMSRT-LPI model based on path masking and degree regression strategies and thereby achieving satisfactory outcomes. This represents the first known integration of path masking and degree regression strategies into the GAE framework for potential LPI inference. The effectiveness of our FMSRT-LPI model primarily relies on four key aspects. First, within the GAE framework, our model integrates multi-source relationships of lncRNAs and proteins with LPN's topological data. Second, the implemented masking strategy efficiently identifies LPN's key paths, reconstructs the network, and reduces the impact of redundant or incorrect data. Third, the integrated degree decoder balances degree and structural information, enhancing node representation. Fourth, the PolyLoss function we introduced is more appropriate for LPI prediction tasks. The results on multiple public datasets further demonstrate our model's potential in LPI prediction.

18.
NMR Biomed ; : e5174, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712650

ABSTRACT

The aim of the current study is to investigate the diagnostic value of R2* mapping versus reduced field-of-view diffusion-weighted imaging (rDWI) of the primary lesion of rectal cancer for preoperative prediction of nonenlarged lymph node metastasis (NLNM). Eighty-one patients with pathologically confirmed rectal cancer underwent preoperative R2* mapping and rDWI sequences before total mesorectal excisions and accompanying regional lymph node dissections. Two radiologists independently performed whole-tumor measurements of R2* and apparent diffusion coefficient (ADC) parameters on primary lesions of rectal cancer. Patients were divided into positive (NLNM+) and negative (NLNM-) groups based on their pathological analysis. The tumor location, maximum diameter of the tumor, and maximum short diameter of the lymph node were assessed. R2* and ADC, pT stage, tumor grade, status of mesorectal fascia, and extramural vascular invasion were also studied for their potential relationships with NLNM using multivariate logistic regression analysis. The NLNM+ group had significantly higher R2* (43.56 ± 8.43 vs. 33.87 ± 9.57, p < 0.001) and lower ADC (1.00 ± 0.13 vs. 1.06 ± 0.22, p = 0.036) than the NLNM- group. R2* and ADC were correlated to lymph node metastasis (r = 0.510, p < 0.001 for R2*; r = -0.235, p = 0.035 for ADC). R2* and ADC showed good and moderate diagnostic abilities in the assessment of NLNM status with corresponding area-under-the-curve values of 0.795 and 0.636. R2* provided a significantly better diagnostic performance compared with ADC for the prediction of NLNM status (z = 1.962, p = 0.0498). The multivariate logistic regression analysis demonstrated that R2* was a compelling factor of lymph node metastasis (odds ratio = 56.485, 95% confidence interval: 5.759-554.013; p = 0.001). R2* mapping had significantly higher diagnostic performance than rDWI from the primary tumor of rectal cancer in the prediction of NLNM status.

19.
Small ; : e2402466, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742945

ABSTRACT

Aqueous Zinc-sulfur (Zn-S) batteries are promising for the field of energy storage due to their low cost, high theoretical capacity, and safety. However, the large volume expansion and the inherently poor conductivity of sulfur would result in electrode cracking and sluggish reaction kinetics, limiting the practical application of Zn-S batteries. Herein, commercial zinc sulfide (ZnS) is employed instead of S as cathode and proposed a doping modification strategy to solve the above problems. The designed ZnS0.93Se0.07 cathode shows good cycle stability and much-improved reaction kinetics, which is due to the smaller bandgap of ZnS0.93Se0.07 (1.40 eV) compared to ZnS (1.86 eV). As a result, the obtained ZnS0.93Se0.07 cathode exhibits a high specific capacity of 552 mAh g-1 (1672.6 mAh g-1 based on S) at 0.1 A g-1 and 330 mAh g-1 (1000 mAh g-1 based on S) at 2 A g-1. Moreover, the ZnS0.93Se0.07 cathode can provide a high areal capacity of 3.8 mAh cm-2 at a high mass loading of 10 mg cm-2 and limited electrolyte (4 µL mg-1). This work provides a simple and effective cathode modification strategy, which is conducive to promoting the practical application of Zn-S batteries.

20.
J Chem Phys ; 160(17)2024 May 07.
Article in English | MEDLINE | ID: mdl-38748027

ABSTRACT

The design of heterogeneous catalysts generally involves optimizing the reactivity descriptor of adsorption energy, which is inevitably governed by the structure of surface-active sites. A prerequisite for understanding the structure-properties relationship is the precise identification of real surface-active site structures, rather than relying on conceived structures derived from bulk alloy properties. However, it remains a formidable challenge due to the dynamic nature of nanoalloys during catalytic reactions and the lack of accurate and efficient interatomic potentials for simulations. Herein, a generalizable deep-learning potential for the Ag-Pd-F system is developed based on a dataset encompassing the bulk, surface, nanocluster, amorphous, and point defected configurations with diverse compositions to achieve a comprehensive description of interatomic interactions, facilitating precise prediction of adsorption energy, surface energy, formation energy, and diffusion energy barrier and is utilized to investigate the structural evolutions of AgPd nanoalloys during fluorination. The structural evolutions involve the inward diffusion of F, the outward diffusion of Ag in Ag@Pd nanoalloys, the formation of surface AgFx species in mixed and Janus AgPd nanoalloys, and the shape deformation from cuboctahedron to sphere in Ag and Pd@Ag nanoalloys. Moreover, the effects of atomic diffusion and dislocation formation and migration on the reconstructing pathway of nanoalloys are highlighted. It is demonstrated that the stress relaxation upon F adsorption serves as the intrinsic driving factor governing the surface reconstruction of AgPd nanoalloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...