Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 329(3): 1026-30, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15752758

ABSTRACT

RNA mediated interference has emerged as a powerful tool in controlling gene expression in mammalian cells. We investigated the gene silencing properties of six thiophosphate substituted siRNAs (all based on a commercial luciferase medium silencer) compared to that of unmodified siRNA. We also examined the cytotoxicity and dose-response using several thiophosphate modified siRNAs with unmodified siRNA. Our results show that two thiophosphate siRNA sequences convert from medium to high silencers with the addition of four randomly placed thiophosphates. Both thiophosphate siRNAs have a statistically significant difference in luciferase gene silencing (5% and 6% activity) relative to the unmodified native medium silencer referred to as siRNA-2 (18% activity) and four other thiophosphate siRNAs that maintain their medium silencing capability. This indicates that specific thiophosphate substitutions may alter native siRNA function. Further, this shows that thiophosphate siRNAs with the same nucleotide sequence but with different sulfur modification positions have different silencing effects. Both the native siRNA and the thio siRNAs showed a concentration dependent relationship, i.e., with concentration increase, the luciferase gene silencing effect also increased. Confirming cytotoxicity experiments showed no significant changes when HeLa cells were treated with 10nM thiophosphate siRNAs over the course of several days. These results suggest that specific placement of thiophosphates could play an important role in the development of siRNAs as therapeutics by engineering in properties such as strength of binding, nuclease sensitivity, and ultimately efficacy.


Subject(s)
Gene Silencing/physiology , Genetic Engineering/methods , Mutagenesis, Site-Directed/genetics , Phosphates/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Transfection/methods , Gene Expression Regulation/genetics , HeLa Cells , Humans , Structure-Activity Relationship
2.
Biol Reprod ; 67(3): 1025-31, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12193417

ABSTRACT

Adrenomedullin is a potent, endogenous vasodilator peptide synthesized and secreted by diverse locations such as adrenal glands, lungs, kidneys, vascular smooth muscle, and endothelium. Homozygous deletion of the adrenomedullin gene is embryonic lethal. We hypothesized that adrenomedullin has an important role in placental and fetal growth and development in rat pregnancy. The current study evaluated maternal systolic blood pressure, litter size, placental and pup weight, pup mortality, and placental pathology in pregnant rats following continuous in utero exposure to an adrenomedullin antagonist. Osmotic minipumps were inserted on Gestational Day 14 to continuously deliver either adrenomedullin, adrenomedullin antagonist, or vehicle control. Systolic blood pressure was recorded daily. Pregnant rats were killed on Gestational Day 15-18, 20, and/or 22 to evaluate placental development and fetal growth. The placentas were graded for the presence of necrosis in the decidua and fetal labyrinth as well as fetal vessel development in the labyrinth. A trend toward increased systolic blood pressure was noted between Gestational Days 17 and 20 in mothers treated with adrenomedullin antagonist, but the difference was not statistically significant. Antagonism of adrenomedullin function during rat pregnancy caused fetal growth restriction, decreased placental size, gross necrosis of placental margins and amniotic membranes, histologically deficient fetal vessel development in the labyrinth, and fetal edema. Adrenomedullin contributes to angiogenesis, functions as a growth factor, and helps regulate vascular tone during rat gestation.


Subject(s)
Embryonic and Fetal Development , Gestational Age , Peptides/antagonists & inhibitors , Peptides/physiology , Placenta/physiology , Adrenomedullin , Amnion/pathology , Animals , Blood Pressure/drug effects , Female , Fetal Growth Retardation/chemically induced , Fetal Weight , Fetus/blood supply , Hydrops Fetalis/chemically induced , Litter Size , Necrosis , Placenta/pathology , Pregnancy , Rats , Systole
SELECTION OF CITATIONS
SEARCH DETAIL
...