Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(7): 8903-8912, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38324390

ABSTRACT

Developing efficient oxygen evolution catalysts (OECs) made from earth-abundant elements is extremely important since the oxygen evolution reaction (OER) with sluggish kinetics hinders the development of many energy-related electrochemical devices. Herein, an efficient strategy is developed to prepare conjugated microporous polymers (CMPs) with abundant and uniform coordination sites by coupling the N-rich organic monomer 2,4,6-tris(5-bromopyrimidin-2-yl)-1,3,5-triazine (TBPT) with Co(II) porphyrin. The resulting CMP-Py(Co) is further metallized with Co2+ ions to obtain CMP-Py(Co)@Co. Structural characterization results reveal that CMP-Py(Co)@Co has higher Co2+ content (12.20 wt %) and affinity toward water compared with CMP-Py(Co). Moreover, CMP-Py(Co)@Co exhibits an excellent OER activity with a low overpotential of 285 mV vs RHE at 10 mA cm-2 and a Tafel slope of 80.1 mV dec-1, which are significantly lower than those of CMP-Py(Co) (335 mV vs RHE and 96.8 mV dec-1). More interestingly, CMP-Py(Co)@Co outperforms most reported porous organic polymer-based OECs and the benchmark RuO2 catalyst (320 mV vs RHE and 87.6 mV dec-1). Additionally, Co2+-free CMP-Py(2H) has negligible OER activity. Thereby, the enhanced OER activity of CMP-Py(Co)@Co is attributed to the incorporation of Co2+ ions leading to rich active sites and enlarged electrochemical surface areas. Density functional theory (DFT) calculations reveal that Co2+-TBPT sites have higher activity than Co2+-porphyrin sites for the OER. These results indicate that the introduction of rich active metal sites in stable and conductive CMPs could provide novel guidance for designing efficient OECs.

2.
Vet Med Sci ; 9(5): 2201-2211, 2023 09.
Article in English | MEDLINE | ID: mdl-37491010

ABSTRACT

BACKGROUND: The frequent interactions of rodents with humans make them a common source of zoonotic infections. Brandt's vole is the dominant rodent species of the typical steppe in Inner Mongolia, and it is also an important pest in grassland. OBJECTIVES: To obtain an initial unbiased measure of the microbial diversity and abundance in the blood and intestinal tracts and to detect the pathogens carried by wild Brandt's voles in Hulun Buir, Inner Mongolia. METHODS: Twenty wild adult Brandt's voles were trapped using live cages, and 12 intestinal samples were collected for metagenomic analysis and 8 blood samples were collected for meta-transcriptomic analysis. We compared the sequencing data with pathogenic microbiota databases to analyse the phylogenetic characteristics of zoonotic pathogens carried by wild voles. RESULTS: A total of 122 phyla, 79 classes, 168 orders, 382 families and 1693 genera of bacteria and a total of 32 families of DNA and RNA viruses in Brandt's voles were characterized. We found that each sample carried more than 10 pathogens, whereas some pathogens that were low in abundance were still at risk of transmission to humans. CONCLUSION: This study improves our understanding of the viral and bacterial diversity in wild Brandt's voles and highlights the multiple viral and bacterial pathogens carried by this rodent. These findings may serve as a basis for developing strategies targeting rodent population control in Hulun Buir and provide a better approach to the surveillance of pathogenic microorganisms in wildlife.


Subject(s)
Animals, Wild , DNA , Humans , Animals , Phylogeny , Arvicolinae/genetics , China
SELECTION OF CITATIONS
SEARCH DETAIL
...