Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(31): e2203617, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35679574

ABSTRACT

Tackling the huge volume expansion of silicon (Si) anode desires a stable solid electrolyte interphase (SEI) to prohibit the interfacial side reactions. Here, a layered conductive polyaniline (LCP) coating is built on Si nanoparticles to achieve high areal capacity and long lifespan. The conformal LCP coating stores electrolyte in interlamination spaces and directs an in situ formation of LCP-integrated hybrid SEI skin with uniform distribution of organic and inorganic components, enhancing the flexibility of the SEI to buffer the volume changes and maintaining homogeneous ion transport during cycling. As a result, the Si anode shows a remarkable cycling stability under high areal capacity (≈3 mAh cm-2 ) after 150 cycles and good rate performance of 942 mAh g-1 at 5 A g-1 . This work demonstrates the great potential of regulating the SEI properties by a layered polymer-directing SEI formation for the mechanical and electrochemical stabilization of Si anodes.

2.
J Mol Neurosci ; 61(4): 498-510, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28144826

ABSTRACT

Parkinson's disease (PD) is a complex neurodegenerative disorder with multifactorial pathologies, including progressive loss of dopaminergic (DA) neurons, oxidative stress, mitochondrial dysfunction, and increased monoamine oxidase (MAO) enzyme activity. There are currently only a few agents approved to ameliorate the symptoms of PD; however, no agent is able to reverse the progression of the disease. Due to the multifactorial pathologies, it is necessary to develop multifunctional agents that can affect more than one target involved in the disease pathology. We have designed and synthesized a series of new multifunctional anti-Parkinson's compounds which can protect cerebral granular neurons from 1-methyl-4-phenylpyridinium (MPP+) insult, scavenge free radicals, and inhibit monoamine oxidase (MAO)/cholinesterase (ChE) activities. Among them, MT-20R exhibited the most potent MAO-B inhibition both in vitro and in vivo. We further investigated the neuroprotective effects of MT-20R using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. In vivo, MT-20R alleviated MPTP-induced motor deficits, raised the striatal contents of dopamine and its metabolites, and restored the expression of tyrosine hydroxylase (TH) and the number of TH-positive DA neurons in the substantia nigra. Additionally, MT-20R enhanced the expression of Bcl-2, decreased the expression of Bax and Caspase 3, and activated the AKT/Nrf2/HO-1 signaling pathway. These findings suggest that MT-20R may be a novel therapeutic candidate for treatment of PD.


Subject(s)
Antiparkinson Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Dopaminergic Neurons/drug effects , Free Radical Scavengers/pharmacology , MPTP Poisoning/drug therapy , Monoamine Oxidase Inhibitors/pharmacology , Animals , Antiparkinson Agents/chemical synthesis , Antiparkinson Agents/therapeutic use , Apoptosis , Cells, Cultured , Cholinesterase Inhibitors/chemical synthesis , Cognition , Dopaminergic Neurons/metabolism , Free Radical Scavengers/chemical synthesis , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/therapeutic use , Motor Activity , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...