Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(5): 5914-5926, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32979181

ABSTRACT

A novel tungsten-doped CeO2 catalyst was fabricated via the sweet potato starch bio-template spread self-combustion (SSC) method to secure a high NH3-SCR activity. The study focuses on the influence of ignition temperature on the physical structure and redox properties of the synthesized catalyst and the catalytic performance of NOx reduction with NH3. These were quantitatively examined by conducting TG-DSC measurements of the starch gel, XRD analysis for the crystallites, SEM and TEM assessments for the morphology of the catalyst, XPS and H2-TPR measurements for the distribution of cerium and tungsten, and NH3-TPD assessments for the acidity of the catalyst. It is found that the ignition temperature shows an important role in the interaction of cerium and tungsten species, and the optimal ignition temperature is 500 °C. The increase of ignition temperature from 150 °C is beneficial to the interactions of species in the catalyst, depresses the formation of WO3, and refines the cubic CeO2 crystallite. The sample ignited at 500 °C shows the biggest BET surface area, the highest surface concentration of Ce species and molar ratio of Ce3+/(Ce3++Ce4+), and the most abundant surface Brønsted acid sites, which are the possible reasons for the superiority of the NH3-SCR activity. With a high GHSV of 200,000 mL (g h)-1 and the optimal ignition temperature, Ce4W2Oz-500 can achieve a steadily high NOx reduction of 80% or more at a lowered reduction temperature in the range of 250~500 °C.


Subject(s)
Ammonia , Cerium , Catalysis , Oxidation-Reduction , Starch , Temperature
2.
IUCrJ ; 5(Pt 1): 54-66, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29354271

ABSTRACT

The characteristics of magnetostructural coupling play a crucial role in the magnetic field-driven behaviour of magnetofunctional alloys. The availability of magnetostructural coupling over a broad temperature range is of great significance for scientific and technological purposes. This work demonstrates that strong magnetostrucural coupling can be achieved over a wide temperature range (222 to 355 K) in Co-doped high Mn-content Mn50Ni42-x Co x Sn8 (0 ≤ x ≤ 10) melt-spun ribbons. It is shown that, over a wide composition range with Co content from 3 to 9 at.%, the paramagnetic austenite first transforms into ferromagnetic austenite at TC on cooling, then the ferromagnetic austenite further transforms into a weakly magnetic martensite at TM. Such strong magnetostructural coupling enables the ribbons to exhibit field-induced inverse martensitic transformation behaviour and a large magnetocaloric effect. Under a field change of 5 T, a maximum magnetic entropy change ΔSM of 18.6 J kg-1 K-1 and an effective refrigerant capacity RCeff of up to 178 J kg-1 can be achieved, which are comparable with or even superior to those of Ni-rich Ni-Mn-based polycrystalline bulk alloys. The combination of high performance and low cost makes Mn-Ni-Co-Sn ribbons of great interest as potential candidates for magnetic refrigeration.

SELECTION OF CITATIONS
SEARCH DETAIL
...