Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 31(5): 1735-1745, 2020 May.
Article in Chinese | MEDLINE | ID: mdl-32530253

ABSTRACT

The bay is the most susceptible area in the marine to human interference. It is of significance for maintaining ecological security of the bay to build an assessment framework of losses of bay ecosystem services caused by the C9 leakage event and evaluate it quantitatively. This study used market value, alternative cost, carbon tax and emergy analysis methods to construct a monetary value evaluation model for the lossses of key ecosystem services (food production, gas regulation, climate regulation, waste treatment, human health, nutrient cycling, species diversity maintenance, and recreation entertainment) caused by C9 leakage accident, and analyzed the losses of x-Bay ecosystem services. The results showed that total value of the losses of ecosystem services caused by C9 spill was 1.93×108 yuan, and the monetary value of loss per unit area was 1.19×108 yuan·km-2, which was more than 2800 times of the general marine oil spill events. Among all the components, the loss of food production services accounted for 77.1% of the total, being much higher than the impact of the general marine oil spills on human production and life. Our results could provide references to the assessment of ecosystem services loss caused by toxic substances like C9, and to the government decision-making and national territory spatial planning.


Subject(s)
Ecology , Ecosystem , Bays , Climate , Conservation of Natural Resources
2.
Phys Rev Lett ; 102(9): 097201, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19392557

ABSTRACT

The cooling field dependence of the exchange bias field in ferromagnet/antiferromagnet (FM/AF) multilayers demonstrates that the bulk AF spin structure plays a crucial role on the origin of exchange bias. FM/AF/FM trilayers were designed to eliminate any interlayer exchange coupling between the FM slabs. By choosing the magnetic cooling field, the AF is ordered below its Néel temperature with the FM layers fully saturated either parallel or antiparallel to each other. The significant difference in the exchange bias field between these two cooling configurations confirms that exchange bias cannot be a purely interfacial effect and that the bulk AF moments play a significant role in pinning the uncompensated spins at the AF/FM interface. This experiment also demonstrates that the mechanism responsible for coercivity enhancement has a different origin and is independent of the process that gives rise to exchange bias.

3.
Phys Rev Lett ; 99(4): 047206, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17678400

ABSTRACT

Precisely engineered tunnel junctions exhibit a long sought effect that occurs when the energy of the electron is comparable to the potential energy of the tunneling barrier. The resistance of metal-insulator-metal tunnel junctions oscillates with an applied voltage when electrons that tunnel directly into the barrier's conduction band interfere upon reflection at the classical turning points: the insulator-metal interface and the dynamic point where the incident electron energy equals the potential barrier inside the insulator. A model of tunneling between free electron bands using the exact solution of the Schrödinger equation for a trapezoidal tunnel barrier qualitatively agrees with experiment.

4.
Phys Rev Lett ; 96(21): 217205, 2006 Jun 02.
Article in English | MEDLINE | ID: mdl-16803273

ABSTRACT

Asymmetric magnetization reversal is an unusual phenomenon in antiferromagnet/ferromagnet (AF/FM) exchange biased bilayers. We investigated this phenomenon in a simple model system experimentally and by simulation assuming inhomogeneously distributed interfacial AF moments. The results suggest that the observed asymmetry originates from the intrinsic broken symmetry of the system, which results in local incomplete domain walls parallel to the interface in reversal to negative saturation of the FM. The magneto-optical Kerr effect unambiguously confirms such an asymmetric reversal and a depth-dependent FM domain wall in accord with the magnetometry and simulations.

5.
Phys Rev Lett ; 96(13): 137201, 2006 Apr 07.
Article in English | MEDLINE | ID: mdl-16712025

ABSTRACT

We observe a thermally induced spontaneous magnetization reversal of epitaxial ferromagnet/antiferromagnet heterostructures under a constant applied magnetic field. Unlike any other magnetic system, the magnetization spontaneously reverses, aligning antiparallel to an applied field with decreasing temperature. We show that this unusual phenomenon is caused by the interfacial antiferromagnetic coupling overcoming the Zeeman energy of the ferromagnet. A significant temperature hysteresis exists, whose height and width can be tuned by the field applied during thermal cycling. The hysteresis originates from the intrinsic magnetic anisotropy in the system. The observation of this phenomenon leads to open questions in the general understanding of magnetic heterostructures. Moreover, this shows that in general heterogeneous nanostructured materials may exhibit unexpected phenomena absent in the bulk.

6.
Phys Rev Lett ; 95(4): 047201, 2005 Jul 22.
Article in English | MEDLINE | ID: mdl-16090835

ABSTRACT

We have used the unique spatial sensitivity of polarized neutron and soft x-ray beams in reflection geometry to measure the depth dependence of magnetization across the interface between a ferromagnet and an antiferromagnet. The net uncompensated magnetization near the interface responds to applied field, while uncompensated spins in the antiferromagnet bulk are pinned, thus providing a means to establish exchange bias.

7.
Phys Rev Lett ; 94(5): 057203, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15783688

ABSTRACT

The size dependence of exchange bias field HE and coercivity Hc was studied by measuring exchange biased Fe-FeF2 dot arrays in comparison with an unstructured exchange biased Fe-FeF2 bilayer. The domain sizes in the ferromagnet (FM) and the antiferromagnet (AFM) play an important role for exchange bias (EB), and thus interesting phenomena may be expected when the size of an EB system becomes comparable to these sizes. We observe drastic changes of HE and Hc in nanostructured Fe-FeF2, which are unexpected because they appear even at a structure size which is too large for matching with AFM or FM domain size to play a role. We propose that under certain conditions the hysteresis loop is affected differently in the two branches of the reversal by shape anisotropy due to patterning. This is possible because the EB induces a reversal asymmetry already in the unpatterned bilayer system.

SELECTION OF CITATIONS
SEARCH DETAIL
...