Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 714
Filter
1.
J Immunol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847616

ABSTRACT

The cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway is instrumental to antitumor immunity, yet the underlying molecular and cellular mechanisms are complex and still unfolding. A new paradigm suggests that cancer cells' cGAS-synthesized cGAMP can be transferred to tumor-infiltrating immune cells, eliciting STING-dependent IFN-ß response for antitumor immunity. Nevertheless, how the tumor microenvironment may shape this process remains unclear. In this study, we found that extracellular ATP, an immune regulatory molecule widely present in the tumor microenvironment, can potentiate cGAMP transfer, thereby boosting the STING signaling and IFN-ß response in murine macrophages and fibroblasts. Notably, genetic ablation or chemical inhibition of murine volume-regulation anion channel LRRC8/volume-regulated anion channel (VRAC), a recently identified cGAMP transporter, abolished ATP-potentiated cGAMP transfer and STING-dependent IFN-ß response, revealing a crucial role of LRRC8/VRAC in the cross-talk of extracellular ATP and cGAMP. Mechanistically, ATP activation of the P2X family receptors triggered Ca2+ influx and K+ efflux, promoting reactive oxygen species production. Moreover, ATP-evoked K+ efflux alleviated the phosphorylation of VRAC's obligate subunit LRRC8A/SWELL1 on S174. Mutagenesis studies indicated that the phosphorylation of S174 on LRRC8A could act as a checkpoint for VRAC in the steady state and a rheostat of ATP responsiveness. In an MC38-transplanted tumor model, systemically blocking CD39 and ENPP1, hydroxylases of extracellular ATP and cGAMP, respectively, elevated antitumor NK, NKT, and CD8+ T cell responses and restrained tumor growth in mice. Altogether, this study establishes a crucial role of ATP in facilitating LRRC8/VRAC transport cGAMP in the tumor microenvironment and provides new insight into harnessing cGAMP transfer for antitumor immunity.

2.
J Phys Chem B ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726956

ABSTRACT

Enzymatic activity is heavily influenced by pH, but the rationale for the dynamical mechanism of pH-dependent enzymatic activity has not been fully understood. In this work, combined neutron scattering techniques, including quasielastic neutron scattering (QENS) and small angle neutron scattering (SANS), are used to study the structural and dynamic changes of a model enzyme, xylanase, under different pH and temperature environments. The QENS results reveal that xylanase at optimal pH exhibits faster relaxational dynamics and a lower energy barrier between conformational substates. The SANS results demonstrate that pH affects both xylanase's stability and monodispersity. Our findings indicate that enzymes have optimized stability and function under their optimal pH conditions, with both structure and dynamics being affected. The current study offers valuable insights into enzymatic functionality mechanisms, allowing for broad industrial applications.

3.
Article in English | MEDLINE | ID: mdl-38739731

ABSTRACT

CONTEXT: Both physical activity (PA) and sedentary behavior (SB) exert important impact on type 2 diabetes, but it remains unclear how maximum impact on improving the mortality and optimized proportion of the two lifestyles combination exists. OBJECTIVE: To explore the impacts of PA/SB combinations on mortality in patients with diabetes. METHODS: Patients with type 2 diabetes patients samplings were collected from the National Health and Nutrition Examination Survey (NHANES) dataset. Their lifestyles were categorized into eight groups based on combinations of the PA and SB levels. Cox proportional hazards models were used to calculate hazard ratios and 95% confidence intervals. RESULTS: During the follow-up period, 1,148 deaths (18.94%) were recorded. High SB (sedentary time ≥6 hours/day) was significantly associated with higher all-cause mortality (HR 1.65). In participants with low SB (<6 hours/day), low PA was associated with lower all-cause mortality (HR 0.43), while further increase of PA level did not show further reduction in either all-cause or cardiovascular mortality. In contrast, in participants with high SB,all levels of PA were associated with lower all-cause mortality (p<0.05), but only moderate PA was associated with lower cardiovascular mortality (HR 0.30). CONCLUSIONS: In patients with type 2 diabetes, different combinations of various levels of PA and SB are associated with different degree of risk for all-cause or cardiovascular mortality.

4.
Bull Entomol Res ; : 1-12, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38751346

ABSTRACT

The Argentine ant (Linepithema humile) and the little fire ant (Wasmannia auropunctata) are among the top 100 invasive alien species globally, causing significant ecological and economic harm. Therefore, it is crucial to study their potential geographic distribution worldwide. This study aimed to predict their global distribution under current and future climate conditions. We used distribution data from various sources, including CABI, GBIF, and PIAKey, and key climate variables selected from 19 environmental factors to model their potential geographic distribution using MaxEnt. The AUC values were 0.925 and 0.937 for L. humile and W. auropunctata, respectively, indicating good predictive performance. Suitable areas for L. humile were mainly in southern North America, northern South America, Europe, central Asia, southern Oceania, and parts of Africa, while W. auropunctata suitable areas were mostly in southern North America, most of South America, a small part of Europe, southern Asia, central Africa, and some parts of Oceania. Under climate change scenario, suitable areas for L. humile increased, while highly suitable areas for W. auropunctata decreased. The top four countries with the largest areas of overlapping suitable habitat under current climate were Brazil, China, Australia, and Argentina, while under future SSP585 climate scenario, the top four countries were Brazil, China, Indonesia, and Argentina. Some countries, such as Estonia and Finland, will see an overlapping adaptation area under climate change. In conclusion, this study provides insight into controlling the spread and harm of L. humile and W. auropunctata.

5.
Chem Soc Rev ; 53(11): 5862-5903, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38716589

ABSTRACT

Biological nanoparticles, or bionanoparticles, are small molecules manufactured in living systems with complex production and assembly machinery. The products of the assembly systems can be further engineered to generate functionalities for specific purposes. These bionanoparticles have demonstrated advantages such as immune system evasion, minimal toxicity, biocompatibility, and biological clearance. Hence, bionanoparticles are considered the new paradigm in nanoscience research for fabricating safe and effective nanoformulations for therapeutic purposes. Harnessing the power of the immune system to recognize and eradicate malignancies is a viable strategy to achieve better therapeutic outcomes with long-term protection from disease recurrence. However, cancerous tissues have evolved to become invisible to immune recognition and to transform the tumor microenvironment into an immunosuppressive dwelling, thwarting the immune defense systems and creating a hospitable atmosphere for cancer growth and progression. Thus, it is pertinent that efforts in fabricating nanoformulations for immunomodulation are mindful of the tumor-induced immune aberrations that could render cancer nanotherapy inoperable. This review systematically categorizes the immunosuppression mechanisms, the regulatory immunosuppressive cellular players, and critical suppressive molecules currently targeted as breakthrough therapies in the clinic. Finally, this review will summarize the engineering strategies for affording immune moderating functions to bionanoparticles that tip the tumor microenvironment (TME) balance toward cancer elimination, a field still in the nascent stage.


Subject(s)
Immunomodulation , Nanoparticles , Neoplasms , Tumor Microenvironment , Humans , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Tumor Microenvironment/drug effects , Immunomodulation/drug effects , Animals
6.
Small ; : e2400954, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38676336

ABSTRACT

In the progression of X-ray-based radiotherapy for the treatment of cancer, the incorporation of nanoparticles (NPs) has a transformative impact. This study investigates the potential of NPs, particularly those comprised of high atomic number elements, as radiosensitizers. This aims to optimize localized radiation doses within tumors, thereby maximizing therapeutic efficacy while preserving surrounding tissues. The multifaceted applications of NPs in radiotherapy encompass collaborative interactions with chemotherapeutic, immunotherapeutic, and targeted pharmaceuticals, along with contributions to photodynamic/photothermal therapy, imaging enhancement, and the integration of artificial intelligence technology. Despite promising preclinical outcomes, the paper acknowledges challenges in the clinical translation of these findings. The conclusion maintains an optimistic stance, emphasizing ongoing trials and technological advancements that bolster personalized treatment approaches. The paper advocates for continuous research and clinical validation, envisioning the integration of NPs as a revolutionary paradigm in cancer therapy, ultimately enhancing patient outcomes.

7.
Sao Paulo Med J ; 142(5): e2023266, 2024.
Article in English | MEDLINE | ID: mdl-38655984

ABSTRACT

BACKGROUND: Osteoporosis, characterized by decreased bone density and increased fracture risk, imposes significant physical, psychosocial, and financial burdens. Early detection and prevention are crucial for managing osteoporosis and reducing the risk of fractures. OBJECTIVES: To investigate the relationship between Hepatitis A seropositivity and bone mineral density (BMD) in adolescents and adults and to explore the potential link between Hepatitis A infection and osteoporosis risk. DESIGN AND SETTING: This cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018 to evaluate the association between hepatitis A seropositivity and BMD in 15,693 participants. METHODS: Multivariable regression analysis was used to calculate the mean BMD and standard error for adolescents and adults, followed by an independent z-test to determine whether there was a significant difference between the seropositive and seronegative groups. RESULTS: Hepatitis A seropositive adolescents and adults had lower BMD than their seronegative counterparts, with significant differences in lumber spine (mean difference = -0.03 g/cm2, P < 0.01 for both age groups) and pelvis BMDs (mean difference = -0.02 g/cm2, P < 0.01 for the adult age groups), after adjusting for various covariates. CONCLUSIONS: This study confirmed that both adolescent and adult individuals seropositive for Hepatitis A antibodies had reduced BMD among both adolescents and adults, especially in the adult group. This finding suggests a possible link between Hepatitis A infection and risk of osteoporosis.


Subject(s)
Bone Density , Hepatitis A , Nutrition Surveys , Osteoporosis , Humans , Bone Density/physiology , Cross-Sectional Studies , Adolescent , Male , Female , Adult , Hepatitis A/epidemiology , Osteoporosis/blood , Osteoporosis/etiology , Young Adult , Middle Aged , Risk Factors , Hepatitis A Antibodies/blood
8.
Materials (Basel) ; 17(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673085

ABSTRACT

This study utilized bismaleimide (BMI) resin, reinforced with introduced ether bonds, as a binding matrix, in combination with silicon carbide (SiC), for the fabrication of composite materials. A thorough investigation was conducted to assess the influence of diverse processing parameters on the mechanical properties and high-temperature thermo-oxidative stability of these composites. Experimental results indicate a notable improvement in the mechanical properties of the composites upon the incorporation of ether bonds, in contrast to their unmodified counterparts. The variation in performance among composites with different ratios and molding densities is apparent. Within a certain range, an increase in resin content and molding density is correlated with improved bending strength in the composites. With a resin content of 27.5 vol% and a molding density of 2.31 g/cm3, the composite achieved a maximum flexural strength of 109.52 MPa, representing a 24% increase compared to its pre-modification state. Even after exposure to high-temperature heat treatment, the composites displayed commendable mechanical properties compared to their pre-ether bond modification counterparts, maintaining 74.5% of the strength of the untreated composites at 300 °C. The scanning electron microscopy (SEM) microstructures of composite materials correlate remarkably well with their mechanical properties.

9.
Materials (Basel) ; 17(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673155

ABSTRACT

Currently, the sol-gel technique is employed in the synthesis of high-performance vitrified bonds; however, its application in the fabrication of stacked abrasives has been minimally explored. Furthermore, the methods utilized in the production of abrasive particles for stacked abrasives are technically challenging and incur high costs, which hinders their actual industrial application. Consequently, this study utilizes the sol-gel approach to synthesize a Na2O-B2O3-SiO2 ternary system vitrified bond powder and employs a molding and crushing method, which offers a lower technological barrier and reduced preparation costs, for the production of abrasive particles subsequently fabricating corundum stacked abrasives. Upon setting the binder composition to a molar ratio of n(SiO2):n(B2O3):n(Na2O) = 65:23:12, it was observed that the crystallization within the glass matrix was minimized and the optimal sintering temperature for the synthesized laminate abrasive to be sustained at 820 °C. At the aforementioned temperature, the binder melt is capable of flowing uniformly amongst the abrasive granules, thereby ensuring a robust encapsulation of the particles. The average single particle compressive strength of the prepared corundum stacked abrasive with a grain size of forty mesh can reach the highest of all composition points at 28.56 N and the average single particle compressive strength of the prepared diamond stacked abrasive is 28.14 N.

10.
BMC Musculoskelet Disord ; 25(1): 238, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532343

ABSTRACT

BACKGROUND: Individuals with osteoarthritis present with comorbidities, and the potential causal associations remain incompletely elucidated. The present study undertook a large-scale investigation about the causality between osteoarthritis and variable traits, using the summary-level data of genome-wide association studies (GWAS). METHODS: The present study included the summary-level GWS data of knee osteoarthritis, hip osteoarthritis, hip or knee osteoarthritis, hand osteoarthritis, and other 1355 traits. Genetic correlation analysis was conducted between osteoarthritis and other traits through cross-trait bivariate linkage disequilibrium score regression. Subsequently, latent causal variable analysis was performed to explore the causal association when there was a significant genetic correlation. Genetic correlation and latent causal variable analysis were conducted on the Complex Traits Genomics Virtual Lab platform ( https://vl.genoma.io/ ). RESULTS: We found 133 unique phenotypes showing causal relationships with osteoarthritis. Our results confirmed several well-established risk factors of osteoarthritis, such as obesity, weight, BMI, and meniscus derangement. Additionally, our findings suggested putative causal links between osteoarthritis and multiple factors. Socioeconomic determinants such as occupational exposure to dust and diesel exhaust, extended work hours exceeding 40 per week, and unemployment status were implicated. Furthermore, our analysis revealed causal associations with cardiovascular and metabolic disorders, including heart failure, deep venous thrombosis, type 2 diabetes mellitus, and elevated cholesterol levels. Soft tissue and musculoskeletal disorders, such as hallux valgus, internal derangement of the knee, and spondylitis, were also identified to be causally related to osteoarthritis. The study also identified the putative causal associations of osteoarthritis with digestive and respiratory diseases, such as Barrett's esophagus, esophagitis, and asthma, as well as psychiatric conditions including panic attacks and manic or hyperactive episodes. Additionally, we observed osteoarthritis causally related to pharmacological treatments, such as the use of antihypertensive medications, anti-asthmatic drugs, and antidepressants. CONCLUSION: Our study uncovered a wide range of traits causally associated with osteoarthritis. Further studies are needed to validate and illustrate the detailed mechanism of those causal associations.


Subject(s)
Diabetes Mellitus, Type 2 , Osteoarthritis, Hip , Osteoarthritis, Knee , Humans , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Multifactorial Inheritance , Polymorphism, Single Nucleotide
11.
BMC Med Educ ; 24(1): 336, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532417

ABSTRACT

BACKGROUND: Medical diagnostics is a pivotal bridge curriculum that receives much less attention from undergraduates in non-clinical medicine health profession programs with less student engagement and poor performance. Mind mapping is an active learning strategy for graphically presenting radiant thinking to culture clinical reasoning. The purpose of this study was to explore whether students' comprehensive diagnostic skills are enhanced through increased student engagement by employing mind mapping. METHODS: We implemented mind mapping in small-grouped workshops with 86 junior undergraduates from preventive medicine program, for physical diagnostic sessions including physical examination (PE) maneuver, electrocardiogram (ECG) interpretation and medical history collection. We also conducted assessments of the above skills, as well as online surveys regarding their expectation on this course, self-evaluation of mind mapping in teaching and the learning process of all the modules. RESULTS: Group members employing mind mapping in all PE sessions obtained higher scores in the heart and lung systems during the PE maneuver exam. Similarly, groups that made more in-depth mind maps achieved higher scores on the ECG quiz. In addition, groups displaying mind maps for history taking from normal classes and reformed class exhibited greater completeness of medical history with both standardized patients and real patients, which was consistent with increased collection of accompanying symptoms. Mind mapping was valued by the majority of students for its benefits in terms of acquiring PE maneuver, theoretical knowledge, medical history collection and medical records writing, clinical reasoning, communication skills, sense of teamwork and cooperation, professionalism and humanistic literacy. DISCUSSION: The visual feature of mind mapping evoked extensive behavioral engagement in all groups, as did cognitive and emotional engagement, as the majority of students expressed their willingness and affective reactions. In the short term, the positive feedbacks encourage growing engagement. The continuous benefits of mind mapping require long-term observation.


Subject(s)
Students, Medical , Humans , Pilot Projects , Students, Medical/psychology , Curriculum , Problem-Based Learning , Physical Examination
12.
Cancer Res ; 84(6): 855-871, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486485

ABSTRACT

Immune checkpoint inhibitors (ICI) transformed the treatment landscape of hepatocellular carcinoma (HCC). Unfortunately, patients with attenuated MHC-I expression remain refractory to ICIs, and druggable targets for upregulating MHC-I are limited. Here, we found that genetic or pharmacologic inhibition of fatty acid synthase (FASN) increased MHC-I levels in HCC cells, promoting antigen presentation and stimulating antigen-specific CD8+ T-cell cytotoxicity. Mechanistically, FASN inhibition reduced palmitoylation of MHC-I that led to its lysosomal degradation. The palmitoyltransferase DHHC3 directly bound MHC-I and negatively regulated MHC-I protein levels. In an orthotopic HCC mouse model, Fasn deficiency enhanced MHC-I levels and promoted cancer cell killing by tumor-infiltrating CD8+ T cells. Moreover, the combination of two different FASN inhibitors, orlistat and TVB-2640, with anti-PD-L1 antibody robustly suppressed tumor growth in vivo. Multiplex IHC of human HCC samples and bioinformatic analysis of The Cancer Genome Atlas data further illustrated that lower expression of FASN was correlated with a higher percentage of cytotoxic CD8+ T cells. The identification of FASN as a negative regulator of MHC-I provides the rationale for combining FASN inhibitors and immunotherapy for treating HCC. SIGNIFICANCE: Inhibition of FASN increases MHC-I protein levels by suppressing its palmitoylation and lysosomal degradation, which stimulates immune activity against hepatocellular carcinoma and enhances the efficacy of immune checkpoint inhibition.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , B7-H1 Antigen/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line , Fatty Acid Synthase, Type I , Liver Neoplasms/genetics , Proteins
13.
Zootaxa ; 5399(5): 540-554, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38480121

ABSTRACT

The Ovipennis bicolora Fang, 1986 and Ovipennis binghami Hampson, 1903 species-groups are reviewed. The identities of the records of O.binghami reported outside of its type locality are clarified. Ovipennis bicolora is rediscovered with the male and female genitalia illustrated for the first time. The male and female genitalia of O.thomasi ern, 2009 are illustrated for the first time and its specific status is confirmed. Five new species are described: O.hanae S.-Y. Huang, Volynkin & ern, sp. n. (Southwestern China), O.regina Volynkin, ern, S.-Y. Huang & Saldaitis, sp. n. (Northern Thailand and Southwestern China), O.takia Volynkin, S.-Y. Huang & ern, sp. n. (Western and Central Thailand), O.kitchingi Volynkin, S.-Y. Huang & ern, sp. n. (Northern Thailand), and O.sapa Volynkin, S.-Y. Huang, ern & Saldaitis, sp. n. (Northern Vietnam). Adults and genitalia of the new species are illustrated and compared with its congeners.


Subject(s)
Moths , Female , Male , Animals , Indochina , China , Genitalia
14.
J Control Release ; 368: 199-207, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38355051

ABSTRACT

Microneedle drug delivery has recently emerged as a clinical method, and dissolving microneedles (DMNs) offer exclusive simplicity and efficiency, compared to the other kinds of microneedles. The tips of most currently available DMNs are cone/house-shaped to result in a lower penetration force. Penetration of the needle tips into the skin relies mainly on the back tape or external pressure, and their adhesion to the skin is relatively low. In addition, only the drug in the part of tips that are pierced into the dermis can be dissolved, resulting in drug waste. Inspired from the barbed structure of the honeybee stinger, we reported substrate-free DMNs with a barbed structure by a dual-molding process, which is suitable for mass production. Those DMNs showed 3-fold greater adhesion force between the needle tips and the skin, better dissolution and deeper penetration than house-shaped DMNs in vivo under the same conditions. For the in situ treatment of psoriasis in mice, the barbed DMNs required only the half dose of house-shaped DMNs to achieve similar efficacy.


Subject(s)
Psoriasis , Skin , Mice , Animals , Administration, Cutaneous , Drug Delivery Systems/methods , Mechanical Phenomena , Needles
15.
World Neurosurg ; 186: 1-6, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38395353

ABSTRACT

BACKGROUND: Watertight duraplasty is essential for surgical management of traumatic anterior skull base (ASB) dural defect but challenging in the deep and narrow operative corridor. Here, the authors report a trans-defect underlay watertight duraplasty (TDUWD) technique for traumatic ASB dural defect. METHODS: TDUWD was performed by inserting a free pericranium graft under the dural defect. The diameter of the pericranium graft was larger than the dural defect. The pericranium graft was sutured to the dural defect watertightly in an "inside-to-outside" direction, with the needle not penetrating the inner layer of pericranium graft. The pedicled pericranium flap was used as a second layer of reconstruction. The characteristics, complications, and outcomes of patients who received TDUWD are reported. RESULTS: A total of 29 patients received TDUWD. Immediate postoperative cessation of cerebrospinal fluid (CSF) leak occurred in 28 patients. One patient recovered after lumber drainage. No patient needed a second operation or reported delayed recurrence of CSF leak. No complication related to the surgical technique was observed. CONCLUSIONS: Use of TDUWD for traumatic ASB dural defect results in an immediate, 1-stage, and definitive correction of CSF leak and seems to be simple, safe, and reliable for large and deeply located dural defects.

16.
Insects ; 15(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38392510

ABSTRACT

Bactrocera dorsalis and Bactrocera correcta are two invasive species that can cause major economic damage to orchards and the fruit import and export industries. Their distribution is advancing northward due to climate change, which is threatening greater impacts on fruit production. This study tested the rapid cold-hardening ability of the two species and identified the temperature associated with the highest survival rate. Transcriptome data and survival data from the two Bactrocera species' larvae were obtained after rapid cold-hardening experiments. Based on the sequencing of transcripts, four Hsp genes were found to be affected: Hsp68 and Hsp70, which play more important roles in the rapid cold hardening of B. dorsalis, and Hsp23 and Hsp70, which play more important roles in the rapid cold hardening of B. correcta. This study explored the adaptability of the two species to cold, demonstrated the expression and function of four Hsps in response to rapid cold hardening, and explained the occurrence and expansion of these two species of tephritids, offering information for further studies.

17.
Pest Manag Sci ; 80(7): 3317-3325, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38375936

ABSTRACT

BACKGROUND: Bactrocera correcta is a quarantine pest that negatively impacts the fruit and vegetable industry. Differentiating B. correcta from similar species, especially in non-adult stages, remains challenging. Rapid molecular identification techniques, such as recombinase polymerase amplification (RPA) combined with CRISPR/Cas12a and multienzyme isothermal rapid amplification with lateral flow dipstick (MIRA-LFD), play a crucial role in early monitoring and safeguarding agricultural production. Our study introduces two methods for the rapid visual identification of B. correcta. RESULTS: Bactrocera correcta specific RPA primers, CRISPR RNA (crRNA), and the LFD probe were designed based on the cox1 genes. The RPA reaction conditions were optimized (at 37 °C for 8 min) for effective template DNA amplification. Two nucleic acid detection methods were established to visualize RPA. In the RPA-CRISPR/Cas12a system, the optimal LbCas12a/crRNA concentration ratio was 200:400 nmol L-1. Successful amplification was determined by the presence or absence of green fluorescence following 15 min incubation at 37 °C. The MIRA-LFD system achieved precise identification of the target species within 4 min at 37 °C. Both methods exhibited high specificity and sensitivity, allowing for detection from 1.0 × 10-1 ng µL-1 of DNA. Combined with rapid DNA extraction, rapid identification of individual B. correcta at different developmental stages was achieved, enhancing the practicality and convenience of the established methods. CONCLUSION: Our research findings demonstrate that both the RPA-CRISPR/Cas12a and MIRA-LFD methods for B. correcta detection was accurate and rapid (within 30 min and 10 min, respectively), at 37 °C. Our methods do not rely on expensive equipment, thus possess high practical value, providing improved identification solutions for port quarantine pests and field applications. © 2024 Society of Chemical Industry.


Subject(s)
CRISPR-Cas Systems , Nucleic Acid Amplification Techniques , Tephritidae , Animals , Nucleic Acid Amplification Techniques/methods , Tephritidae/genetics , Recombinases/metabolism , Molecular Diagnostic Techniques
18.
Transl Pediatr ; 13(1): 38-51, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38323179

ABSTRACT

Background: Graves' disease (GD) is an autoimmune thyroid disorder. Our previous study has demonstrated a significant decrease in flavone levels among children with GD compared to the control group. Puerarin, a well-known flavonoid with anti-inflammatory and antioxidant properties. We wanted to investigate its potential impact on GD pathogenesis, aiming to determine whether increasing puerarin intake could prevent or delay the onset of GD. Methods: Adenovirus with TSHR-289 subunit was used to establish a GD mice model, and mice were intragastrically administered with puerarin or sterilized water daily. Thyroid function and inflammatory cytokine levels were quantified using ELISA, lymphocyte subsets were analyzed via flow cytometry, oxidative stress (OS) markers were measured with a microplate reader, and the expression of pertinent signaling pathway proteins were assessed by Western blot. Results: The results demonstrated that puerarin treatment significantly decreased thyroxin levels and alleviated thyroid pathological changes in GD mice. Furthermore, the immune imbalance of GD mice was improved, as evidenced by reduced inflammatory indexes, elevated antioxidant levels, and decreased malondialdehyde (MDA) levels compared to untreated GD mice. Puerarin-treated GD mice exhibited significantly lower expressions of heat shock protein (HSP): HSP70, HSP90, phosphorylated extracellular regulated kinases (p-ERK) and phosphorylated protein kinase B (p-AKT) than untreated GD mice. Moreover, low dosage puerarin (400 mg/kg) was associated with a better protective effect than high dosage (1,200 mg/kg). Conclusions: Puerarin may have the potential to mitigate GD by inhibiting inflammatory and OS, through downregulating the expression of HSP70 and HSP90 and suppressing the activation of the PI3K/AKT/ERK signaling pathway. Furthermore, a lower dose exhibited superior protective effects compared to a higher dose.

19.
NPJ Digit Med ; 7(1): 13, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225423

ABSTRACT

Facial palsy (FP) profoundly influences interpersonal communication and emotional expression, necessitating precise diagnostic and monitoring tools for optimal care. However, current electromyography (EMG) systems are limited by their bulky nature, complex setups, and dependence on skilled technicians. Here we report an innovative biosensing approach that utilizes a PEDOT:PSS-modified flexible microneedle electrode array (P-FMNEA) to overcome the limitations of existing EMG devices. Supple system-level mechanics ensure excellent conformality to the facial curvilinear regions, enabling the detection of targeted muscular ensemble movements for facial paralysis assessment. Moreover, our apparatus adeptly captures each electrical impulse in response to real-time direct nerve stimulation during neurosurgical procedures. The wireless conveyance of EMG signals to medical facilities via a server augments access to patient follow-up evaluation data, fostering prompt treatment suggestions and enabling the access of multiple facial EMG datasets during typical 6-month follow-ups. Furthermore, the device's soft mechanics alleviate issues of spatial intricacy, diminish pain, and minimize soft tissue hematomas associated with traditional needle electrode positioning. This groundbreaking biosensing strategy has the potential to transform FP management by providing an efficient, user-friendly, and less invasive alternative to the prevailing EMG devices. This pioneering technology enables more informed decision-making in FP-management and therapeutic intervention.

20.
Annu Rev Entomol ; 69: 219-237, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37708416

ABSTRACT

Throughout the past century, the global spread of Bactrocera pests has continued to pose a significant threat to the commercial fruit and vegetable industry, resulting in substantial costs associated with both control measures and quarantine restrictions. The increasing volume of transcontinental trade has contributed to an escalating rate of Bactrocera pest introductions to new regions. To address the worldwide threat posed by this group of pests, we first provide an overview of Bactrocera. We then describe the global epidemic, including border interceptions, species diagnosis, population genetics, geographical expansion, and invasion tracing of Bactrocera pests. We further consider the literature concerning the invasion co-occurrences, life-history flexibility, risk assessment, bridgehead effects, and ongoing implications of invasion recurrences, as well as a case study of Bactrocera invasions of California. Finally, we call for global collaboration to effectively monitor, prevent, and control the ongoing spread of Bactrocera pests and to share experience and knowledge to combat it.


Subject(s)
Tephritidae , Animals , Geography , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...