Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
1.
Poult Sci ; 103(7): 103788, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38692177

ABSTRACT

This study aims to identify candidate genes related to ovarian development after ovarian tissue transplantation through transcriptome sequencing (RNA-seq) and expression network analyses, as well as to provide a reference for determining the molecular mechanism of improving ovarian development following ovarian tissue transplantation. We collected ovarian tissues from 15 thirty-day-old ducks and split each ovary into 4 equal portions of comparable sizes before orthotopically transplanting them into 2-day-old ducks. Samples were collected on days 0 (untransplanted), 3, 6, and 9. The samples were paraffin sectioned and then subjected to Hematoxylin-Eosin (HE) staining and follicular counting. We extracted RNA from ovarian samples via the Trizol method to construct a transcriptome library, which was then sequenced by the Illumina Novaseq 6000 sequencing platform. The sequencing results were examined for differentially expressed genes (DEG) through gene ontology (GO) function and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, gene set enrichment analysis (GSEA), weighted correlation network analysis (WGCNA), and protein-protein interaction (PPI) networks. Some of the candidate genes were selected for verification using real-time fluorescence quantitative PCR (qRT-PCR). Histological analysis revealed a significant reduction in the number of morphologically normal follicles at 3, 6, and 9 d after ovarian transplantation, along with significantly higher abnormality rates (P < 0.05). The transcriptome analysis results revealed 2,114, 2,224, and 2,257 upregulated DEGs and 2,647, 2,883, and 2,665 downregulated DEGs at 3, 6, and 9 d after ovarian transplantation, respectively. Enrichment analysis revealed the involvement multiple pathways in inflammatory signaling, signal transduction, and cellular processes. Furthermore, WGCNA yielded 13 modules, with 10, 4, and 6 candidate genes mined at 3, 6 and 9 d after ovarian transplantation, respectively. Transcription factor (TF) prediction showed that STAT1 was the most important TF. Finally, the qRT-PCR verification results revealed that 12 candidate genes exhibited an expression trend consistent with sequencing data. In summary, significant differences were observed in the number of follicles in duck ovaries following ovarian transplantation. Candidate genes involved in ovarian vascular remodeling and proliferation were screened using RNA-Seq and WGCNA.

2.
Front Microbiol ; 15: 1392450, 2024.
Article in English | MEDLINE | ID: mdl-38803376

ABSTRACT

Porcine epidemic diarrhea (PED) is a highly contagious intestinal infection primarily affecting pigs. It is caused by the porcine epidemic diarrhea virus (PEDV). PEDV targets the villus tissue cells in the small intestine and mesenteric lymph nodes, resulting in shortened intestinal villi and, in extreme cases, causing necrosis of the intestinal lining. Moreover, PEDV infection can disrupt the balance of the intestinal microflora, leading to an overgrowth of harmful bacteria like Escherichia coli. Exosomes, tiny membrane vesicles ranging from 30 to 150 nm in size, contain a complex mixture of RNA and proteins. MicroRNA (miRNA) regulates various cell signaling, development, and disease progression processes. This study extracted exosomes from both groups and performed high-throughput miRNA sequencing and bioinformatics techniques to investigate differences in miRNA expression within exosomes isolated from PEDV-infected porcine small intestine tissue compared to healthy controls. Notably, two miRNA types displayed upregulation in infected exosomes, while 12 exhibited downregulation. These findings unveil abnormal miRNA regulation patterns in PEDV-infected intestinal exosomes, shedding light on the intricate interplay between PEDV and its host. This will enable further exploration of the relationship between these miRNA changes and signaling pathways, enlightening PEDV pathogenesis and potential therapeutic targets.

3.
Clin Chim Acta ; 560: 119734, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777245

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is a major global cause of death among gynecological cancers, with a high mortality rate. Early diagnosis, distinguishing between benign conditions and early malignant OC forms, is vital for successful treatment. This research investigates serum metabolites to find diagnostic biomarkers for early OC identification. METHODS: Metabolomic profiles derived from the serum of 60 patients with benign conditions and 60 patients with malignant OC were examined using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Comparative analysis revealed differential metabolites linked to OC, aiding biomarker identification for early-diagnosis of OC via machine learning features. The predictive ability of these biomarkers was evaluated against the traditional biomarker, cancer antigen 125 (CA125). RESULTS: 84 differential metabolites were identified, including 2-Thiothiazolidine-4-carboxylic acid (TTCA), Methionyl-Cysteine, and Citrulline that could serve as potential biomarkers to identify benign conditions and malignant OC. In the diagnosis of early-stage OC, the area under the curve (AUC) for Citrulline was 0.847 (95 % Confidence Interval (CI): 0.719-0.974), compared to 0.770 (95 % CI: 0.596-0.944) for TTCA, and 0.754 for Methionine-Cysteine (95 % CI: 0.589-0.919). These metabolites demonstrate a superior diagnostic capability relative to CA125, which has an AUC of 0.689 (95 % CI: 0.448-0.931). Among these biomarkers, Citrulline stands out as the most promising. Additionally, in the diagnosis of benign conditions and malignant OC, using logistic regression to combine potential biomarkers with CA125 has an AUC of 0.987 (95 % CI: 0.9708-1) has been proven to be more effective than relying solely on the traditional biomarker CA125 with an AUC of 0.933 (95 % CI: 0.870-0.996). Furthermore, among all the differential metabolites, lipid metabolites dominate, significantly impacting glycerophospholipid metabolism pathway. CONCLUSION: The discovered serum metabolite biomarkers demonstrate excellent diagnostic performance for distinguishing between benign conditions and malignant OC and for early diagnosis of malignant OC.

4.
J Transl Med ; 22(1): 331, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575942

ABSTRACT

BACKGROUND: A better diagnostic marker is in need to distinguish breast cancer from suspicious breast lesions. The abnormal glycosylation of haptoglobin has been documented to assist cancer diagnosis. This study aims to evaluate disease-specific haptoglobin (DSHp)-ß N-glycosylation as a potential biomarker for breast cancer diagnosis. METHODS: DSHp-ß chains of 497 patients with suspicious breast lesions who underwent breast surgery were separated from serum immunoinflammatory-related protein complexes. DSHp-ß N-glycosylation was quantified by mass spectrometric analysis. After missing data imputation and propensity score matching, patients were randomly assigned to the training set (n = 269) and validation set (n = 113). Logistic regression analysis was employed in model and nomogram construction. The diagnostic performance was analyzed with receiver operating characteristic and calibration curves. RESULTS: 95 N-glycopeptides at glycosylation sites N207/N211, N241, and N184 were identified in 235 patients with benign breast diseases and 262 patients with breast cancer. DSHp-ß N-tetrafucosyl and hexafucosyl were significantly increased in breast cancer compared with benign diseases (p < 0.001 and p = 0.001, respectively). The new diagnostic model and nomogram included GN2F2, G6N3F6, GN2FS at N184, G-N&G2S2, G2&G3NFS, G2N3F, GN3 at N207/N211, CEA, CA153, and could reliably distinguish breast cancer from benign diseases. For the training set, validation set, and training and validation sets, the area under the curves (AUCs) were 0.80 (95% CI: 0.75-0.86, specificity: 87%, sensitivity: 62%), 0.77 (95% CI:0.69-0.86, specificity: 75%, sensitivity: 69%), and 0.80 (95% CI:0.76-0.84, specificity: 77%, sensitivity: 68%), respectively. CEA, CA153, and their combination yielded AUCs of 0.62 (95% CI: 0.56-0.67, specificity: 29%, sensitivity: 90%), 0.65 (95% CI: 0.60-0.71, specificity: 74%, sensitivity: 51%), and 0.67 (95% CI: 0.62-0.73, specificity: 60%, sensitivity: 68%), respectively. CONCLUSIONS: The combination of DSHp-ß N-glycopeptides, CEA, and CA153 might be a better serologic marker to differentiate between breast cancer and benign breast diseases. The dysregulated N-glycosylation of serum DSHp-ß could provide insights into breast tumorigenesis.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Nomograms , Haptoglobins/chemistry , Glycosylation , Glycopeptides/analysis
5.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675523

ABSTRACT

Microelectromechanical systems (MEMS) gas sensors have numerous advantages such as compact size, low power consumption, ease of integration, etc., while encountering challenges in sensitivity and high resistance because of their low sintering temperature. This work utilizes the in situ growth of Zeolitic Imidazolate Framework-8 (ZIF-8) followed by its conversion to N-doped ZnO. The results obtained from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicate that the in situ derivation of ZIF-8 facilitates the adhesion of ZnO particles, forming an island-like structure and significantly reducing the interfaces between these particles. Furthermore, powder X-ray diffraction (XRD) analysis, elemental mapping, and X-ray photoelectron spectroscopy (XPS) analysis confirm the conversion of ZIF-8 to ZnO, the successful incorporation of N atoms into the ZnO lattice, and the creation of more oxygen vacancies. The ZIF-8-derived N-doped ZnO/MEMS sensor (ZIF (3)-ZnO/MEMS) exhibits remarkable gas sensitivity for ethanol detection. At an operating temperature of 290 °C, it delivers a substantial response value of 80 towards 25 ppm ethanol, a 13-fold enhancement compared with pristine ZnO/MEMS sensors. The sensor also exhibits an ultra-low theoretical detection limit of 11.5 ppb to ethanol, showcasing its excellent selectivity. The enhanced performance is attributed to the incorporation of N-doped ZnO, which generates abundant oxygen vacancies on the sensor's surface, leading to enhanced interaction with ethanol molecules. Additionally, a substantial two-order-of-magnitude decrease in the resistance of the gas-sensitive film is observed. Overall, this study provides valuable insights into the design and fabrication strategies applicable to high-performance MEMS gas sensors in a broader range of gas sensing.

6.
J Virol ; 98(4): e0024824, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38466094

ABSTRACT

The H9N2 avian influenza virus (AIV) represents a significant risk to both the poultry industry and public health. Our surveillance efforts in China have revealed a growing trend of recent H9N2 AIV strains exhibiting a loss of hemagglutination activity at 37°C, posing challenges to detection and monitoring protocols. This study identified a single K141N substitution in the hemagglutinin (HA) glycoprotein as the culprit behind this diminished hemagglutination activity. The study evaluated the evolutionary dynamics of residue HA141 and studied the impact of the N141K substitution on aspects such as virus growth, thermostability, receptor-binding properties, and antigenic properties. Our findings indicate a polymorphism at residue 141, with the N variant becoming increasingly prevalent in recent Chinese H9N2 isolates. Although both wild-type and N141K mutant strains exclusively target α,2-6 sialic acid receptors, the N141K mutation notably impedes the virus's ability to bind to these receptors. Despite the mutation exerting minimal influence on viral titers, antigenicity, and pathogenicity in chicken embryos, it significantly enhances viral thermostability and reduces plaque size on Madin-Darby canine kidney (MDCK) cells. Additionally, the N141K mutation leads to decreased expression levels of HA protein in both MDCK cells and eggs. These findings highlight the critical role of the K141N substitution in altering the hemagglutination characteristics of recent H9N2 AIV strains under elevated temperatures. This emphasizes the need for ongoing surveillance and genetic analysis of circulating H9N2 AIV strains to develop effective control and prevention measures.IMPORTANCEThe H9N2 subtype of avian influenza virus (AIV) is currently the most prevalent low-pathogenicity AIV circulating in domestic poultry globally. Recently, there has been an emerging trend of H9N2 AIV strains acquiring increased affinity for human-type receptors and even losing their ability to bind to avian-type receptors, which raises concerns about their pandemic potential. In China, there has been a growing number of H9N2 AIV strains that have lost their ability to agglutinate chicken red blood cells, leading to false-negative results during surveillance efforts. In this study, we identified a K141N mutation in the HA protein of H9N2 AIV to be responsible for the loss of hemagglutination activity. This finding provides insight into the development of effective surveillance, prevention, and control strategies to mitigate the threat posed by H9N2 AIV to both animal and human health.


Subject(s)
Amino Acid Substitution , Hemagglutination , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Mutation , Animals , Chick Embryo , Dogs , Humans , Chickens/virology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/growth & development , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/metabolism , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza in Birds/virology , Poultry , Female , Mice , Cell Line , Evolution, Molecular , Temperature , Receptors, Virus/metabolism
7.
Proteomics Clin Appl ; : e2300032, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456388

ABSTRACT

PURPOSE: Diabetic retinopathy (DR), as one of the microvascular complications of diabetes, is a leading cause of acquired vision loss. Most DR cases are detected in the advanced stage through fundoscopy, making molecular biomarkers urgently needed for early diagnosis of DR. EXPERIMENTAL DESIGN: Serum disease-specific haptoglobin-ß (Hp-ß) chains of 100 patients with type 2 diabetes mellitus (T2DM) and 156 T2DM patients with non-proliferative diabetic retinopathy (NPDR) were separated using polyacrylamide gel electrophoresis. After in-gel digestion and enrichment, the intact N-glycopeptides were detected by mass spectrometry. RESULTS: Fucosylation of Hp-ß was significantly increased and sialylation of Hp-ß was significantly decreased in background DR (BDR, an early-stage DR) patients compared with non-diabetic retinopathy patients (p < 0.05) and yielded area under curves (AUCs) of 0.801 and 0.829 in training and validation groups, respectively, which had an advantage over glycated hemoglobin A1c (AUC ≤ 0.691). Moreover, a significant increase in sialylated Hp-ß was found in severe NPDR patients compared with BDR patients and yielded an AUC of 0.828 to distinguish severe NPDR from BDR. CONCLUSION: Changes in Hp-ß glycosylation are closely related to DR, and may be used for early diagnosis and screening of DR.

8.
J Control Release ; 368: 131-139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38331003

ABSTRACT

Poly(ß-amino ester)s (PAEs) have emerged as a type of highly safe and efficient non-viral DNA delivery vectors. However, the influence of amphiphilicity and chain sequence on DNA transfection efficiency and safety profile remain largely unexplored. In this study, four PAEs with distinct amphiphilicity and chain sequences were synthesized. Results show that both amphiphilicity and chain sequence significantly affect the DNA binding and condensation ability of PAEs, as well as size, zeta potential and cellular uptake of PAE/DNA polyplexes. PAEs with different amphiphilicity and chain sequence exhibit cell type-dependent transfection capabilities: in human bladder transitional cell carcinoma (UM-UC-3), hydrophilic PAE (P-Philic) and amphiphilic PAE random copolymer (R-Amphilic) exhibit relatively higher gene transfection efficiency, while in human bladder epithelial immortalized cells (SV-HUC-1), hydrophobic PAE (P-Phobic), R-Amphilic, and amphiphilic PAE block copolymer (B-Amphilic) demonstrate higher transfection capability. Regardless of cell types, amphiphilic PAE block copolymer (B-Amphilic) always exhibits much lower gene transfection efficiency. In addition, in human colon cancer cells (HCT-116), P-Philic and R-Amphilic achieved superior gene transfection efficiency at high and low polymer/DNA weight ratios, respectively. Importantly, R-Amphilic can effectively deliver the gene encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to human chondrosarcoma cells SW1353 to induce their apoptosis, highlighting its potential application in cancer gene therapy. This study not only establishes a new paradigm for enhancing the gene transfection efficiency of PAEs by modulating their amphiphilicity and chain sequence but also identifies R-Amphilic as a potential candidate for the effective delivery of TRAIL gene in cancer gene therapy.


Subject(s)
Esters , Polymers , Humans , Polymers/chemistry , Transfection , DNA , Gene Transfer Techniques
9.
Virology ; 593: 110026, 2024 05.
Article in English | MEDLINE | ID: mdl-38373360

ABSTRACT

Virus-associated infectious diseases are highly detrimental to human health and animal husbandry. Among all countermeasures against infectious diseases, prophylactic vaccines, which developed through traditional or novel approaches, offer potential benefits. More recently, mucosal vaccines attract attention for their extraordinary characteristics compared to conventional parenteral vaccines, particularly for mucosal-related pathogens. Representatively, coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), further accelerated the research and development efforts for mucosal vaccines by thoroughly investigating existing strategies or involving novel techniques. While several vaccine candidates achieved positive progresses, thus far, part of the current COVID-19 mucosal vaccines have shown poor performance, which underline the need for next-generation mucosal vaccines and corresponding platforms. In this review, we summarized the typical mucosal vaccines approved for humans or animals and sought to elucidate the underlying mechanisms of these successful cases. In addition, mucosal vaccines against COVID-19 that are in human clinical trials were reviewed in detail since this public health event mobilized all advanced technologies for possible solutions. Finally, the gaps in developing mucosal vaccines, potential solutions and prospects were discussed. Overall, rational application of mucosal vaccines would facilitate the establishing of mucosal immunity and block the transmission of viral diseases.


Subject(s)
COVID-19 , Communicable Diseases , Viral Vaccines , Animals , Humans , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2
10.
Exp Ther Med ; 27(3): 94, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38313581

ABSTRACT

Cerebral ischemia is a type of cerebrovascular disease with high disability and mortality rates. The expression of forkhead box protein O4 (FOXO4) in the brain is increased following traumatic brain injury. To the best of our knowledge, however, the role of FOXO4 as well as its mechanism in cerebral ischemia has not been reported so far. For the establishment of an in vitro cellular injury model, human brain microvascular endothelial HCMEC/D3 cells were induced by oxygen-glucose deprivation/reoxygenation (OGD/R). mRNA and protein expressions of FOXO4 and C1q/tumor necrosis factor-related protein 6 (CTRP6) in OGD/R-induced HCMEC/D3 cells were detected by reverse transcription-quantitative (RT-q)PCR and western blotting. The transfection efficacy of small interfering (si)- and overexpression (Ov)-FOXO4 and si-CTRP6 was assessed using RT-qPCR and western blotting. Cell Counting Kit-8 and TUNEL assay were used to assess viability and apoptosis of HCMEC/D3 cells induced by OGD/R, respectively. A FITC-Dextran assay kit was applied to determine endothelial permeability and immunofluorescence assay was used for the measurement of the tight junction protein zonula occludens-1. The levels of oxidative stress markers and inflammatory cytokines were assessed with corresponding assay kits. The binding sites of transcription factor, FOXO4 and CTRP6 promoter were predicted using HDOCK SERVER. Luciferase reporter assay was used to detect the activity of the CTRP6 promoter while chromatin immunoprecipitation assay was used to evaluate the binding ability of the FOXO4 and CTRP6 promoter. Western blotting was used for the detection of apoptosis- and AMPK/Nrf2/heme oxygenase-1 (HO-1) pathway-associated proteins, along with tight junction proteins. The expression of FOXO4 was increased in OGD/R-induced HCMEC/D3 cells. After interfering with FOXO4 in cells, the viability of the OGD/R-induced HCMEC/D3 cells was increased while apoptosis was decreased. Furthermore, FOXO4 interference improved cellular barrier dysfunction but inhibited oxidative stress and the inflammatory response in HCMEC/D3 cells induced by OGD/R. FOXO4 knockdown regulated CTRP6 transcription in HCMEC/D3 cells. Knockdown of FOXO4 regulated expression of CTRP6 and protected OGD/R-induced HCMEC/D3 cell injury via the AMPK/Nrf2/HO-1 pathway. The present study indicated that FOXO4 knockdown activated CTRP6 to protect against cerebral microvascular endothelial cell injury induced by OGD/R via the AMPK/Nrf2/HO-1 pathway.

11.
J Control Release ; 367: 197-208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246205

ABSTRACT

Melanoma, one of the most devastating forms of skin cancer, currently lacks effective clinical treatments. Delivery of functional genes to modulate specific protein expression to induce melanoma cell apoptosis could be a promising therapeutic approach. However, transfecting melanoma cells using non-viral methods, particularly with cationic polymers, presents significant challenges. In this study, we synthesized three branched poly(ß-amino ester)s (HPAEs) with evenly distributed branching units but varying space lengths through a two-step "oligomer combination" strategy. The unique topological structure enables HPAEs to condense DNA to form nano-sized polyplexes with favorable physiochemical properties. Notably, HPAEs, especially HPAE-2 with intermediate branching unit space length, demonstrated significantly higher gene transfection efficiency than the leading commercial gene transfection reagent, jetPRIME, in human melanoma cells. Furthermore, HPAE-2 efficiently delivered the Bax-encoding plasmid into melanoma cells, leading to a pronounced pro-apoptotic effect without causing noticeable cytotoxicity. This study establishes a potent non-viral platform for gene transfection of melanoma cells by harnessing the distribution of branching units, paving the way for potential clinical applications of gene therapy in melanoma treatment.


Subject(s)
Esters , Melanoma , Polymers , Humans , Transfection , Esters/chemistry , Melanoma/genetics , Melanoma/therapy , Apoptosis , Gene Transfer Techniques
12.
Mol Neurobiol ; 61(2): 1044-1060, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37676391

ABSTRACT

Ferroptosis is a distinct peroxidation-driven form of cell death tightly involved in subarachnoid hemorrhage (SAH). This study delved into the mechanism of deferoxamine (DFO, an iron chelator) in SAH-induced ferroptosis and inflammation. SAH mouse models were established by endovascular perforation method and injected intraperitoneally with DFO, or intraventricularly injected with the Nrf2 pathway inhibitor ML385 before SAH, followed by detection of neurological function, blood-brain barrier (BBB) permeability, and brain water content. Apoptotic level of hippocampal neurons, symbolic changes of ferroptosis, and levels of pro-inflammatory cytokines were assessed using TUNEL staining, Western blotting, colorimetry, and ELISA. The localization and expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) were detected. HT22 cells were exposed to Hemin as in vitro SAH models and treated with FIN56 to induce ferroptosis, followed by evaluation of the effects of DFO on FIN56-treated HT22 cells. The regulation of Nrf2 in thioredoxin reductase 1 (TXNRD1) was analyzed by co-immunoprecipitation and Western blotting. Moreover, HT22 cells were treated with DFO and ML385 to identify the role of DFO in the Nrf2/TXNRD1 axis. DFO extenuated brain injury, and ferroptosis and inflammation in hippocampal neurons of SAH mice. Nrf2 localized at the CA1 region of hippocampal neurons, and DFO stimulated nuclear translocation of Nrf2 protein in hippocampal neurons of SAH mice. Additionally, DFO inhibited ferroptosis and inflammatory responses in FIN56-induced HT22 cells. Nrf2 positively regulated TXNRD1 protein expression. Indeed, DFO alleviated FIN56-induced ferroptosis and inflammation via activation of the Nrf2/TXNRD1 axis. DFO alleviated neurological deficits, BBB disruption, brain edema, and brain injury in mice after SAH by inhibiting hippocampal neuron ferroptosis via the Nrf2/TXNRD1 axis. DFO ameliorates SAH-induced ferroptosis and inflammatory responses in hippocampal neurons by activating the Nrf2/TXNRD1 axis.


Subject(s)
Brain Injuries , Ferroptosis , Subarachnoid Hemorrhage , Rats , Mice , Animals , Rats, Sprague-Dawley , NF-E2-Related Factor 2/metabolism , Deferoxamine , Thioredoxin Reductase 1/metabolism , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/metabolism , Hippocampus/metabolism , Neurons/metabolism , Inflammation/drug therapy
13.
Poult Sci ; 103(2): 103269, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064883

ABSTRACT

Since 2021, a novel strain of goose reovirus (GRV) has emerged within the goose farming industry in Guangdong province, China. This particular viral variant is distinguished by the presence of white necrotic foci primarily localized in the liver and spleen, leading to substantial economic losses for the poultry industry. However, the etiology, prevalence and genomic characteristics of the causative agent have not been thoroughly investigated. In this study, we conducted an epidemiological inquiry employing suspected GRV samples collected from May 2021 to September 2022. The macroscopic pathological and histopathological lesions associated with GRV-infected clinical specimens were examined. Moreover, we successfully isolated the GRV strain and elucidated the complete genome sequence of the isolate GD21/88. Through phylogenetic and recombination analysis, we unveiled that the GRV strains represent a novel variant resulting from multiple reassortment events. Specifically, the µNS, λC, and σNS genes of GRV were found to have originated from chicken reovirus, while the σA gene of GRV exhibited a higher degree of similarity with a novel duck reovirus. The remaining genes of GRV were traced back to Muscovy duck reovirus. Collectively, our findings underscore the significance of GRV as a pathogenic agent impacting the goose farming industry. The insights gleaned from this study contribute to a more comprehensive understanding of the epidemiology of GRV in Southern China and shed light on the genetic reassortment events exhibited by the virus.


Subject(s)
Liver Diseases , Orthoreovirus, Avian , Poultry Diseases , Reoviridae Infections , Animals , Geese/genetics , Chickens/genetics , Orthoreovirus, Avian/genetics , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Phylogeny , Genome, Viral , Genomics , Liver Diseases/veterinary , Necrosis/veterinary , China/epidemiology
14.
Small Methods ; 8(1): e2300829, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37728191

ABSTRACT

N-type ZrNiSn-based alloys reach a record thermoelectric figure of merit zT ≈1.2 by increasing the carrier concentration to 4-5 × 1020 cm-3 . In this work, It is reported that a comparable zT can also be realized in trace Ru-doped ZrNiSn-based alloy at even lower temperature by decreasing the carrier concentration. Compared to the previously reported Co doping, the doping of Ru results in a more effective reduction in carrier concentration, and thus higher Seebeck coefficient, lower electronic thermal conductivity, and enhanced thermoelectric performance. The electronic specific heat coefficient of the ZrNi1- x Rux Sn sample remains constant with increasing Ru content, indicating no obvious change in the density of states effective mass. Theoretical calculations show that the doping of Ru has negligible effect on the bottom of conduction band. The lattice thermal conductivity is further reduced by alloying Ti and Hf at the Zr site, and the bipolar diffusion is suppressed by doping of 0.5 at.% Sb. As a result, Ti0.25 Zr0.5 Hf0.25 Ni0.99 Ru0.01 Sn0.995 Sb0.005 reaches not only a zT value of 1.1 at 773 K but also a record average zT value of 0.8 in 300 to 873 K, demonstrating the effectiveness of trace Ru doping on boosting the thermoelectric performance of ZrNiSn-based alloys.

15.
Mol Carcinog ; 63(2): 326-338, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947182

ABSTRACT

This study aimed to screen for key genes related to the prognosis of patients with glioblastoma (GBM). First, bioinformatics analysis was performed based on databases such as TCGA and MSigDB. Inflammatory-related genes were obtained from the MSigDB database. The TCGA-tumor samples were divided into cluster A and B groups based on consensus clustering. Multivariate Cox regression was applied to construct the risk score model of inflammatory-related genes based on the TCGA database. Second, to understand the effects of model characteristic genes on GBM cells, U-87 MG cells were used for knockdown experiments, which are important means for studying gene function. PLAUR is an unfavorable prognostic biomarker for patients with glioma. Therefore, the model characteristic gene PLAUR was selected for knockdown experiments. The prognosis of cluster A was significantly better than that of cluster B. The verification results also demonstrate that the risk score could predict overall survival. Although the immune cells in cluster B and high-risk groups increased, no matching survival advantage was observed. It may be that stromal activation inhibits the antitumor effect of immune cells. PLAUR knockdown inhibits tumor cell proliferation, migration, and invasion, and promoted tumor cell apoptosis. In conclusion, a prognostic prediction model for GBM composed of inflammatory-related genes was successfully constructed. Increased immune cell expression may be linked to a poor prognosis for GBM, as stromal activation decreased the antitumor activity of immune cells in cluster B and high-risk groups. PLAUR may play an important role in tumor cell proliferation, migration, invasion, and apoptosis.


Subject(s)
Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Prognosis , Genetic Risk Score , Risk Factors
16.
Environ Sci Pollut Res Int ; 31(3): 4140-4153, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38102422

ABSTRACT

The facile fabrication of low-cost adsorbents possessing high removal efficiency and convenient separation property is an urgent need for water treatment. Herein, magnetic activated carbon was synthesized from spent coffee grounds (SCG) by Fe-catalyzed CO2 activation at 800 °C for 90 min, and magnetization and pore formation were simultaneously achieved during heat treatment. The sample was characterized by N2 adsorption-desorption, XRD, VSM, SEM, and FTIR. Batch adsorption experiments were conducted using lomefloxacin (LMO) as the probing pollutant. Preparation mechanism was revealed by TG-FTIR and XRD. Experimental results showed that Fe3O4 derived from Fe species can be reduced to Fe by carbon at high temperatures, followed by subsequent reoxidation to Fe3O4 by CO2, and the redox cycle between Fe and Fe3O4 favored the formation of pores. The promotion effects of Fe species on CO2 activation can be quantitatively reflected by the yield of CO as the signature gaseous product, and the suitable activation temperate range was determined to be 675 to 985 °C. The BET surface area, total pore volume, and saturated magnetization value of the product were 586 m2 g-1, 0.327 cm3 g-1, and 11.59 emu g-1, respectively. The Langmuir model was applicable for the adsorption isotherm data for LMO with the maximum adsorption capacity of 95 mg g-1, and thermodynamic analysis revealed that the adsorption process was endothermic and spontaneous. This study demonstrated that Fe-catalyzed CO2 activation was an effective method of converting SCG into magnetic separable adsorbent for LMO removal from aqueous medium.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents/analysis , Charcoal/analysis , Coffee , Carbon Dioxide/analysis , Iron/analysis , Magnetic Phenomena , Catalysis , Water Pollutants, Chemical/analysis , Kinetics
18.
Theriogenology ; 215: 351-360, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150851

ABSTRACT

Boar fertility is a key determinant of the production efficiency of the whole pig breeding industry and boar sperm motility is the seminal parameter with the greatest impact on the fecundity of a sow. Exosomes are small, extracellular vesicles found in many body fluids. Seminal plasma exosomes, which are secreted by the epididymis, prostate, seminal vesicles, and testes, contain a large number of miRNAs, the types and levels of which can reflect the physiological state of source cells. It has been shown that the expression profile of seminal plasma exosomal miRNA differs between low-motility semen and normal semen. The aim of this study was to investigate the relationship between semen motility and exosomal miRNA profiles to obtain information that would allow to predict boar fertility, as well as contribute to the understanding of the mechanisms by which exosomal miRNAs regulate semen motility. Three high-motility (semen motility >90 %) and three low-motility (semen motility <80 %) semen samples were collected from Landrace and Yorkshire boars, respectively, and seminal plasma exosomes were extracted by ultracentrifugation. Exosome characterization was performed using transmission electron microscopy, NTA, and Western blot. The expression profiles of exosomal miRNAs associated with semen motility in the two boar breeds were subsequently determined by small RNA sequencing. The results showed that 297 known miRNAs and 295 novel RNAs were co-expressed in the four groups. Notably, six miRNAs (ssc-miR-122-5p, ssc-miR-486, ssc-miR-451, ssc-miR-345-3p, ssc-miR-362, and ssc-miR-500-5p) were found to be differentially expressed in both boar breeds. Enrichment analysis of the target genes of the differentially expressed miRNAs showed that they were mainly involved in biological processes such as regulation of transcription from RNA polymerase II promoter, regulation of gene expression, and intracellular signal transduction and signaling pathways such as the PI3K-Akt, MAPK, and Ras signaling pathways. The six differentially expressed miRNAs identified in this study have significant potential as noninvasive markers of boar semen motility. Meanwhile, the results of the enrichment analysis provide novel insights into the mechanisms underlying the regulation of semen motility.


Subject(s)
Exosomes , MicroRNAs , Swine , Male , Animals , Female , Semen/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/genetics , Exosomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Sperm Motility , Sequence Analysis, RNA/veterinary
19.
Angew Chem Int Ed Engl ; 63(7): e202319003, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38131604

ABSTRACT

To date, significant efforts have been dedicated to improve their ionic conductivity, thermal stability, and mechanical strength of solid polymer electrolytes (SPEs). However, direct monitoring of physical and chemical changes in SPEs is still lacking. Moreover, existing thermosetting SPEs are hardly degradable. Herein, by overcoming the limitation predicted by Flory theory, self-reporting and biodegradable thermosetting hyperbranched poly(ß-amino ester)-based SPEs (HPAE-SPEs) are reported. HPAE is successfully synthesized through a well-controlled "A2+B4" Michael addition strategy and then crosslinked it in situ to produce HPAE-SPEs. The multiple tertiary aliphatic amines at the branching sites confer multicolour luminescence to HPAE-SPEs, enabling direct observation of its physical and chemical damage. After use, HPAE-SPEs can be rapidly hydrolysed into non-hazardous ß-amino acids and polyols via self-catalysis. Optimized HPAE-SPE exhibits an ionic conductivity of 1.3×10-4  S/cm at 60 °C, a Na+ transference number ( t N a + ${{t}_{Na}^{+}}$ ) of 0.67, a highly stable sodium plating-stripping behaviour and a low overpotential of ≈190 mV. This study establishes a new paradigm for developing SPEs by engineering multifunctional polymers. The self-reporting and biodegradable properties would greatly expand the scope of applications for SPEs.

20.
Poult Sci ; 103(2): 103333, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38113705

ABSTRACT

Avian influenza virus (AIV) poses a significant threat to the poultry industry and public health. Among the diverse AIV subtypes, H3, H4, and H5 are frequently detected in waterfowl and live poultry markets (LPM). The expeditious and precise identification of these subtypes is imperative in impeding the dissemination of the disease. In this study, we have developed a triplex real-time PCR assay endowed with the capacity to simultaneously discriminate AIV subtypes H3, H4, and H5. This method showcases remarkable specificity, selectively amplifying H3, H4, and H5 AIV subtypes sans any cross-reactivity with other subtypes or common avian pathogens. Furthermore, this method exhibits high sensitivity, with a detection threshold of 2.1 × 102 copies/µL for H3, H4, and H5 AIV subtypes. Additionally, the assay demonstrates reproducibility, as evidenced by intra- and interassay variability, with a coefficient of variation below 1.5%. A total of 338 cloacal swabs were collected from LPM to evaluate the performance of our assay. The obtained results evinced a high level of concordance with the sequencing data. In summary, our study has developed a triplex real-time PCR method that can be employed in laboratory-based testing and surveillance of AIV. This assay holds promise in augmenting our ability to detect and monitor AIV subtypes, thereby facilitating timely interventions and safeguarding both the poultry industry and public health.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Chickens , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Influenza A virus/genetics , Poultry , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...