Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 944: 173838, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879025

ABSTRACT

The excessive accumulation of dibutyl phthalate (DBP) in soil poses a serious threat to soil ecosystems and crop safety production. Electrokinetic-assisted phytoremediation (EKPR) has been considered as a potential technology for remediating organic contaminated soils. In order to investigate the effect of different electric fields on removal efficiency of DBP, three kinds of electric fields were set up in this study (1 V·cm-1, 2 V·cm-1 and 3 V·cm-1). The results showed that 59 % of DBP in soil was removed by maize (Zea mays L.) within 20 d in low-intensity electric field (1 V·cm-1), and the accumulation of DBP in maize tissues decreased significantly compared to the non-electrified treatment group. Interestingly, it could be observed that the low-intensity electric field could maintain ion homeostasis and improve the photosynthetic efficiency of the plant, thereby relieving the inhibition of DBP on plant growth and increasing the chlorophyll content (94.1 %) of maize. However, the removal efficiency of DBP by maize decreased significantly under the medium-intensity (2 V·cm-1) and high-intensity electric field (3 V·cm-1). Moreover, the important roles of soil enzyme and rhizosphere bacterial community in low-electric field were also investigated and discussed. This study provided a new perspective for exploring the mechanism of removing DBP through EKPR.

2.
Food Sci Nutr ; 12(3): 1724-1735, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455205

ABSTRACT

Food for special medical purposes (FSMP) has received increasing attention as an enteral nutritional supplement. To investigate the effects of whole nutritional formula (WNF) containing dietary fiber and regular formula on nutritional supplementation and improvement of intestinal microecology, a rat malnutrition model was established with the formulations of WNF, FOS, and SDF (10, 20 g/kg bw) administered by gavage for 30 days. The results showed that the three formulations effectively improved the nutritional status of the malnourished rats, significantly increasing the level of IgG, increasing the abundance of Bacteroidetes, and affecting the content of propionic acid (PRO). The nutritional status of rats is closely related to growth performance, nutritional indexes, and immunoglobulin index, which cause changes in the composition of the intestinal flora. The above results showed that WNF positively affected the nutritional improvement, immune level, and intestinal health of rats. The comprehensive evaluation also suggested that the formulation containing ginseng water-soluble dietary fiber (ginseng-SDF) had the most significant effect.

3.
Environ Sci Pollut Res Int ; 31(3): 4848-4863, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38105330

ABSTRACT

Polycyclic aromatic hydrocarbon (PAH) pollution has attracted much attention due to their wide distribution in soil environment and serious harm to human health. In order to establish an efficient and eco-friendly technology for remediation of PAH-contaminated soil, phytoremediation utilizing maize assisted with enzyme remediation was explored in this study. The results showed that the participation of laccase could promote the degradation of phenanthrene (PHE) from soil and significantly reduce the accumulation of PHE in maize. The degradation efficiency of PHE in soil could reach 77.19% under laccase-assisted maize remediation treatment, while the accumulation of PHE in maize roots and leaves decreased by 41.23% and 74.63%, respectively, compared to that without laccase treatment, after 24 days of maize cultivation. Moreover, it was found that laccase addition shifted the soil microbial community structure and promoted the relative abundance of some PAH degrading bacteria, such as Pseudomonas and Sphingomonas. In addition, the activities of some enzymes that were involved in PAH degradation process and soil nutrient cycle increased with the treatment of laccase enzyme. Above all, the addition of laccase could not only improve the removal efficiency of PHE in soil, but also alter the soil environment and reduce the accumulation of PHE in maize. This study provided new perspective for exploring the efficiency of the laccase-assisted maize in the remediation of contaminated soil, evaluating the way for reducing the risk of secondary pollution of plants in the phytoremediation process.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Humans , Soil/chemistry , Zea mays/metabolism , Laccase , Soil Pollutants/analysis , Soil Microbiology , Phenanthrenes/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Biodegradation, Environmental
4.
Sci Total Environ ; 905: 167305, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37742959

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are highly toxic organic pollutants widely distributed in terrestrial environments and laccase was considered as an effective enzyme in PAHs bioremediation. However, laccase-assisted phytoremediation of PAHs-contaminated soil has not been reported. Moreover, the overuse of plastic films in agriculture greatly increased the risk of co-existence of PAHs and microplastics in soil. Microplastics can adsorb hydrophobic organics, thus altering the bioavailability of PAHs and ultimately affecting the removal of PAHs from soil. Therefore, this study aimed to evaluate the efficiency of laccase-assisted maize (Zea mays L.) in the remediation of phenanthrene (PHE)-contaminated soil and investigate the effect of microplastics on this remediation process. The results showed that the combined application of laccase and maize achieved a removal efficiency of 83.47 % for soil PHE, and laccase significantly reduced the accumulation of PHE in maize. However, microplastics significantly inhibited the removal of soil PHE (10.88 %) and reduced the translocation factor of PHE in maize (87.72 %), in comparison with PHE + L treatment. Moreover, microplastics reduced the laccase activity and the relative abundance of some PAHs-degrading bacteria in soil. This study provided an idea for evaluating the feasibility of the laccase-assisted plants in the remediation of PAHs-contaminated soil, paving the way for reducing the risk of secondary pollution in the process of phytoremediation.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Laccase , Microplastics , Plastics , Soil Pollutants/analysis , Phenanthrenes/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Soil Microbiology
5.
Front Immunol ; 14: 1161625, 2023.
Article in English | MEDLINE | ID: mdl-37415978

ABSTRACT

This study aimed to investigate the ameliorative effect of the polysaccharides of Panax quinquefolius (WQP) on ulcerative colitis (UC) induced by dextran sulfate sodium (DSS) in mice and to explore its mechanism. Male C57BL/6J mice were randomly divided into the control group (C), model group (DSS), positive control mesalazine (100 mg/kg, Y) group, and low (50 mg/kg, L), medium (100 mg/kg, M) and high dose (200 mg/kg, H) of WQP groups. The UC model was induced by free drinking water with 2.5% DSS for 7 days. During the experiment, the general condition of the mice was observed, and the disease activity index (DAI) was scored. The conventional HE staining was used to observe pathological changes in mice's colon, and the ELISA method was used to detect the levels of interleukin-6 (IL-6), IL-4, IL-8, IL-10, IL-1ß and tumor necrosis factor-α (TNF-α) in mice's colon. The changes in gut microbiota in mice were detected by high-throughput sequencing; the concentration of short-chain fatty acids (SCFAs) was determined by gas chromatography; the expression of related proteins was detected by Western blot. Compared with the DSS group, the WQP group showed a significantly lower DAI score of mice and an alleviated colon tissue injury. In the middle- and high-dose polysaccharides groups, the levels of pro-inflammatory cytokines IL-6, IL-8, IL-1ß and TNF-α in the colonic tissue were significantly decreased (P<0.05), while the levels of IL-4 and IL-10 were significantly increased (P<0.05). The 16S rRNA gene sequencing results showed that different doses of WQP could regulate the composition and diversity of gut microbiota and improve its structure. Specifically, at the phylum level, group H showed an increased relative abundance of Bacteroidetes and a decreased relative abundance of Firmicutes compared with the DSS group, which was closer to the case in group C. At the family level, the relative abundance of Rikenellaceae in L, M and H groups increased significantly, close to that in group C. At the genus level, the relative abundance of Bacteroides, Shigella and Oscillospira in the H group increased significantly, while that of Lactobacillus and Prevotella decreased significantly. The high-dose WQP group could significantly increase the contents of acetic acid, propionic acid, butyric acid, and total SCFAs. Different doses of WQP also increased the expression levels of tight junction proteins ZO-1, Occludin and Claudin-1. To sum up, WQP can regulate the gut microbiota structure of UC mice, accelerate the recovery of gut microbiota, and increase the content of Faecal SCFAs and the expression level of tight junction proteins in UC mice. This study can provide new ideas for the treatment and prevention of UC and theoretical references for the application of WQP.


Subject(s)
Colitis, Ulcerative , Animals , Mice , Male , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Interleukin-10 , Dextran Sulfate/toxicity , Interleukin-6 , Tumor Necrosis Factor-alpha/metabolism , Interleukin-8 , Interleukin-4 , RNA, Ribosomal, 16S , Mice, Inbred C57BL
6.
Foods ; 12(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37372560

ABSTRACT

BACKGROUND: Ginsenoside Rg5 has been proven to possess numerous health benefits. However, Rg5 is difficult to prepare using the current methods, and the poor stability and solubility of Rg5 are intractable properties that limit its application. We try to establish and optimize a new method for preparing Rg5. METHODS: Different amino acids acted as catalysts, and reaction conditions were investigated to transform Rg5 in GSLS. Different CDs and reaction conditions were investigated for the preparation of CD-Rg5 based on yield and purity; ESI-MS, FT-IR, XRD and SEM analyses were used to prove the formation of the CD-Rg5 inclusion complex. Both the stability and bioactivity of ß-CD-Rg5 were investigated. RESULTS: The content of Rg5 reached 140.8 mg/g after transformation of GSLS using Asp as a catalyst. The yield of ß-CD-Rg5 reached a maximum of 12% and a purity of 92.5%. The results showed that the ß-CD-Rg5 inclusion complex can improve its stability of Rg5 against light and temperature. Antioxidant activity analyses against DPPH, ABTS+, and Fe2+ chelation showed enhanced antioxidant activity of the ß-CD-Rg5 inclusion complex. CONCLUSIONS: A novel and effective strategy for the separation of Rg5 from ginseng stem-leaf saponins (GSLS) was developed to improve the stability, solubility, and bioactivity of Rg5.

7.
Front Immunol ; 14: 1085456, 2023.
Article in English | MEDLINE | ID: mdl-37153583

ABSTRACT

This study aimed to clarify the effects of two processed forms of American ginseng (Panax quinquefolius L.) on immunosuppression caused by cyclophosphamide (CTX) in mice. In the CTX-induced immunosuppressive model, mice were given either steamed American ginseng (American ginseng red, AGR) or raw American ginseng (American ginseng soft branch, AGS) by intragastric administration. Serum and spleen tissues were collected, and the pathological changes in mice spleens were observed by conventional HE staining. The expression levels of cytokines were detected by ELISA, and the apoptosis of splenic cells was determined by western blotting. The results showed that AGR and AGS could relieve CTX-induced immunosuppression through the enhanced immune organ index, improved cell-mediated immune response, increased serum levels of cytokines (TNF-α, IFN-γ, and IL-2) and immunoglobulins (IgG, IgA, and IgM), as well as macrophage activities including carbon clearance and phagocytic index. AGR and AGS downregulated the expression of BAX and elevated the expression of Bcl-2, p-P38, p-JNK, and p-ERK in the spleens of CTX-injected animals. Compared to AGS, AGR significantly improved the number of CD4+CD8-T lymphocytes, the spleen index, and serum levels of IgA, IgG, TNF-α, and IFN-γ. The expression of the ERK/MAPK pathway was markedly increased. These findings support the hypothesis that AGR and AGS are effective immunomodulatory agents capable of preventing immune system hypofunction. Future research may investigate the exact mechanism to rule out any unforeseen effects of AGR and AGS.


Subject(s)
Panax , Tumor Necrosis Factor-alpha , Mice , Animals , Tumor Necrosis Factor-alpha/pharmacology , Cyclophosphamide/adverse effects , Immunosuppression Therapy , Cytokines/metabolism , Macrophages , Immunoglobulin G/pharmacology , Signal Transduction , Immunoglobulin A/pharmacology
8.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5203-5208, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36472026

ABSTRACT

The present study comprehensively compared the content of chondroitin sulfate in Cervi Cornu Pantotrichum(CCP) and Cervi Cornu(CC) of different specifications and explored the feasibility of chondroitin sulfate as an indicator to distinguish between CCP and CC. Twenty-two batches of CCP of different specifications(two-branched velvet antler and three-branched velvet antler) from 15 habitats, CC from 6 habitats, and 60 batches of CCP slices prepared from different parts(wax slices, powder slices, gauze slices, and bone slices) were collected. High-performance liquid chromatography(HPLC) was used to determine chondroitin sulfate content in CCP and CC of different specifications. Cluster analysis was used to classify CCP slices of different specifications. The results showed that CCP contained abundant chondroitin sulfate. The average content of chondroitin sulfate was 2.35 mg·g~(-1) in two-branched velvet antler and 1.79 mg·g~(-1) in three-branched velvet antler, significantly higher than 0.11 mg·g~(-1) in CC. Chondroitin sulfate content in wax slices, powder slices, gauze slices, and bone slices were 7.81, 8.39, 1.33, and 0.54 mg·g~(-1), respectively. Cluster analysis showed that gauze slices and bone slices could be clustered into one category and distinguished from wax slices and powder slices. CCP slices prepared from different parts could be separated well through chondroitin sulfate content. Based on the five principles of Q-marker selection, chondroitin sulfate can be used as a potential Q-marker for the identification of CCP and CC, as well as a potential quality indicator for CCP slices of different specifications(wax slices, powder slices, gauze slices, and bone slices). This research provides data support for CCP quality evaluation.


Subject(s)
Antlers , Cornus , Deer , Gastropoda , Animals , Chondroitin Sulfates , Powders
9.
Nutrients ; 14(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36501024

ABSTRACT

Diosgenin (DIO) is a dietary and phytochemical steroidal saponin representing multiple activities. The present study investigated the protective effect of DIO on type II diabetes-associated nonalcoholic fatty liver disease (D-NAFLD). The rat model was established by high-fat diet and streptozotocin injection and then administered DIO for 8 weeks. The results showed that DIO reduced insulin resistance index, improved dyslipidemia, and relieved pancreatic damage. DIO decreased hepatic injury markers, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). H&E staining showed that DIO relieved hepatic lipid deposition. Mechanistically, DIO inhibited hepatic de novo lipogenesis (DNL) and increased fatty acid ß-oxidation (FAO) through regulation of the AMPK-ACC/SREBP1 pathway. Endoplasmic reticulum (ER) stress was inhibited by DIO through regulation of PERK and IRE1 arms, which may then inhibit DNL. DIO also decreased reactive oxygen species (ROS) and enhanced the antioxidant capacity via an increase in Superoxide dismutase (SOD), Catalase (CAT), and Glutathione peroxidase (GPx) activities. The mitochondria are the site for FAO, and ROS can damage mitochondrial function. DIO relieved mitochondrial fission and fusion disorder by inhibiting DRP1 and increasing MFN1/MFN2 expressions. Mitochondrial apoptosis was then inhibited by DIO. In conclusion, the present study suggests that DIO protects against D-NAFLD by inhibiting DNL and improving FAO and mitochondrial function.


Subject(s)
Diabetes Mellitus, Type 2 , Diosgenin , Non-alcoholic Fatty Liver Disease , Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Diosgenin/pharmacology , Diosgenin/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Lipogenesis , Liver/metabolism , Diet, High-Fat/adverse effects , Mitochondria/metabolism , Fatty Acids/metabolism
10.
Front Nutr ; 9: 833859, 2022.
Article in English | MEDLINE | ID: mdl-35445056

ABSTRACT

The mechanism by which ginsenosides from Panax quinquefolium L. transform into rare saponins by different processing methods and their antitumour effects have yet to be fully elucidated. Our study aimed to detect the effect of amino acids and processing methods on the conversion of ginsenosides in American ginseng to rare ginsenosides, using 8 monomeric ginsenosides as substrates to discuss the reaction pathway and mechanism. S180 tumour-bearing mice were established to study the antitumour effects of American ginseng total saponins (AGS-Q) or American ginseng total saponins after transformation (AGS-H) synergistic CTX. The results showed that aspartic acid was the best catalyst, and the thermal extraction method had the best effect. Under the optimal conditions, including a reaction temperature of 110°C, an aspartic acid concentration of 5%, a reaction time of 2.5 h and a liquid-solid ratio of 30 mL/g, the highest conversion of Rk1 and Rg5 was 6.58 ± 0.11 mg/g and 3.74 ± 0.05 mg/g, respectively. In the reaction pathway, the diol group saponins participated in the transformation process, and the triol group saponins basically did not participate in the transformation process. AGS-Q or AGS-H synergistic CTX, or AGS-H synergistic CTX/2 could significantly increase the tumour inhibition rate, spleen index and white blood cell count, had a significant upregulation effect on IL-2 and IL-10 immune cytokines; significantly restored the ratio of CD4+/CD8+; and significantly inhibited the level of CD4+CD25+. AGS-Q or AGS-H synergistic with CTX or CTX/2 can significantly upregulate the expression of Bax and cleaved-Caspase-3 and inhibit the expression of antiapoptotic protein Bcl-2. AGS synergistic CTX in the treatment of S180 tumour-bearing mice can improve the efficacy and reduce toxicity.

11.
Foods ; 11(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35327312

ABSTRACT

Polysaccharides from Panax ginseng are natural carbohydrates with multiple activities. However, little was known about its functions on colitis. In this study, we aim to investigate the protective effects of ginseng polysaccharides and its effective subfraction on dextran sodium sulfate (DSS)-induced colitis. Water soluble ginseng polysaccharides (WGP) were obtained from dry ginseng root, then purified to neutral fraction (WGPN) and acidic fraction (WGPA) by ion exchange chromatography. An animal model was constructed with male Wistar rats, which were treated with a normal diet (con group), DSS (DSS group), WGP (WGP group), WGPN (WGPN group), and WGPA (WGPA group), respectively. Both WGP and WGPA alleviated the colitis symptoms and colon structure changes of colitis rats. They decreased the disease activity index (DAI) scores and improved colon health; reduced colon damage and recovered the intestinal barrier via regulating the tight-junction-related proteins (ZO-1 and Occludin); downregulated inflammatory cytokines (IL-1ß, IL-2, IL-6, and IL-17) and inhibited the TLR4/MyD88/NF-κB-signaling pathway in the colon; regulated the diversity and composition of gut microbiota, especially the relative abundance of Ruminococcus; enhanced the production of SCFAs. In conclusion, WGP exerted a protective effect against colitis with its acidic fraction (WGPA) as an effective fraction. The results support the utilization and investigation of ginseng polysaccharides as a potential intervention strategy for the prevention of colitis.

12.
J Immunol Res ; 2022: 4126273, 2022.
Article in English | MEDLINE | ID: mdl-35345778

ABSTRACT

American ginseng (Panax quinquefolius L.) is an herbal medicine with polysaccharides as its important active ingredient. The purpose of this research was to identify the effects of the polysaccharides of P. quinquefolius (WQP) on rats with antibiotic-associated diarrhoea (AAD) induced by lincomycin hydrochloride. WQP was primarily composed of galacturonic acid, glucose, galactose, and arabinose. The yield, total sugar content, uronic acid content, and protein content were 6.71%, 85.2%, 31.9%, and 2.1%, respectively. WQP reduced the infiltration of inflammatory cells into the ileum and colon, reduced the IL-1ß, IL-6, IL-17A, and TNF-α levels, increased the levels of IL-4 and IL-10 in colon tissues, improved the production of acetate and propionate, regulated the gut microbiota diversity and composition, improved the relative richness of Lactobacillus and Bacteroides, and reduced the relative richness of Blautia and Coprococcus. The results indicated that WQP can enhance the recovery of the intestinal structure in rats, reduce inflammatory cytokine levels, improve short-chain fatty acid (SCFA) levels, promote recovery of the gut microbiota and intestinal mucosal barrier, and alleviate antibiotic-related side effects such as diarrhoea and microbiota dysbiosis caused by lincomycin hydrochloride. We found that WQP can protect the intestinal barrier by increasing Occludin and Claudin-1 expression. In addition, WQP inhibited the MAPK inflammatory signaling pathway to improve the inflammatory status. This study provides a foundation for the treatment of natural polysaccharides to reduce antibiotic-related side effects.


Subject(s)
Panax , Animals , Anti-Bacterial Agents/adverse effects , Diarrhea/chemically induced , Diarrhea/drug therapy , Diarrhea/metabolism , Lincomycin/pharmacology , Lincomycin/therapeutic use , MAP Kinase Signaling System , Panax/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Rats
13.
J Food Biochem ; 46(5): e14088, 2022 05.
Article in English | MEDLINE | ID: mdl-35118669

ABSTRACT

In this paper, deer oil was used as a raw material to prepare deer oil powder by microencapsulation technology to study the potential protective activity of deer oil powder on ethanol-induced acute gastric mucosal injury in rats. The results show that the best process for preparing deer oil powder is: the solids account for 25% of the system content, the wall material Whey Milk Protein Isolate-Maltodextrin ratio is 1:5, the Sodium Stearyl Lactate-Glycerides of Monostearate and Distearate compound emulsifier content is 0.8%, the ratio is 1:1, and the deer oil accounts for 30% of the solid content, and the spray drying inlet temperature is 180°C. Deer oil powder can reduce total stomach injury, gastric mucosal congestion area, and injury score index. Without affecting the blood lipid level, it can reduce the content of Myeloperoxidase, enhance the activity of Superoxide Dismutase and Glutathione Peroxidase, and has good antioxidant activity. Enhance the expression of defense factors Estradiol, Epidermal Growth Factor, and Somatostatin. At the same time, it reduces the levels of Interleukin-1ß and Interleukin-6 pro-inflammatory cytokines in gastric tissue and enhances the expression of anti-inflammatory factors Interleukin-4 and Interleukin-10. These results indicate that the gastric protection mechanism of deer oil powder may be related to the enhancement of mucosal defense factors, inhibition of inflammation, and oxidative stress. PRACTICAL APPLICATIONS: This study screened the optimal formula for preparing microencapsulated deer oil powder and proved for the first time that deer oil powder has a strong gastroprotective effect on ethanol-induced acute gastric injury in rats. The gastric protective mechanism of deer oil powder is mainly to reduce oxidative stress, inflammatory cytokine accumulation and to increase the content of defense factors. Therefore, deer oil powder can be used as a new source of gastric treatment drugs.


Subject(s)
Deer , Stomach Ulcer , Animals , Cytokines/metabolism , Ethanol/adverse effects , Gastric Mucosa , Powders , Rats , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy
14.
Food Chem ; 379: 132146, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35078058

ABSTRACT

Sediment is a key issue in the production and marketing of plant beverages, as is ginseng beverages. The formation of sediment in ginseng beverages is a gradual process. This work describes the formation of sediment from different parts of ginseng and describes the color and clarity of the liquid and the amount and morphology of the sediment. The results showed there are significant differences in the sediment formation speed, morphology and transmittance for the aqueous extracts prepared from different parts of ginseng. The amounts of sediment generated from the different parts of ginseng is as follows: main root > rhizome > fibrous root. Free amino acids, Ba, Ca, Ni, and Sr concentrations are significantly and positively correlated with the transmittance. The total saponins, Al, Fe, and Mn concentrations are significantly and negatively correlated with the transmittance. There are obvious crystals and more Ca in the fibrous root sediment. We analyzed and compared the chemical components in the sediment and extract. The results show that the main components of the sediment are carbohydrates and protein. According to the partition coefficient the contents of protein, ginsenosides (Rb1, Rb2, Rb3, Rf) and some ions (Al, Fe, Ca, and Na) contribute more to the formation of the sediment than the other investigated components.


Subject(s)
Ginsenosides , Panax , Saponins , Chromatography, High Pressure Liquid , Ginsenosides/analysis , Plant Roots/chemistry , Rhizome/chemistry
15.
Front Nutr ; 8: 769463, 2021.
Article in English | MEDLINE | ID: mdl-34869537

ABSTRACT

In this study, deer suet fat was used as a raw material to study the effects of aqueous enzymatic extraction of deer oil on its components, followed by studies into the potential protective activity, and related molecular mechanisms of deer oil on ethanol-induced acute gastric mucosal injury in rats. The results show that aqueous enzymatic extraction of deer oil not only has a high extraction yield and has a small effect on the content of active ingredients. Deer oil can reduce total stomach injury. Without affecting the blood lipid level, it can reduce the oxidative stress, which is manifested by reducing the content of myeloperoxidase (MPO) and enhancing the activity level of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). It also enhances the expression of defense factors prostaglandin (E2), epidermal growth factor (EGF), and somatostatin (SS), it inhibits apoptosis evidenced by the enhanced of Bcl-2 and decreased expression of cleavage of caspase-3 and Bax. At the same time, it reduces inflammation, which is manifested by reducing the expression of IL-1ß, interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) gastric tissue pro-inflammatory cytokines, and enhancing the expression of anti-inflammatory factors IL-4 and IL-10, and inhibiting the mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) signaling pathway in gastric tissue.

16.
Molecules ; 26(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34833975

ABSTRACT

The activation of hepatic stellate cells (HSC) plays a key role in the progression of hepatic fibrosis, it is essential to remove activated HSC through apoptosis to reverse hepatic fibrosis. Schisandrin B (Sch B) is the main chemical component of schisandrin lignan, and it has been reported to have good hepatoprotective effects. However, Schisandrin B on HSC apoptosis remains unclear. In our study, we stimulated the HSC-T6 and LX-2 cell lines with TGF-ß1 to induce cell activation, and the proliferation and apoptosis of the activated HSC-T6 and LX-2 cells were detected after treatment with different doses of Schisandrin B. Flow cytometry results showed that Sch B significantly reduced the activity of activated HSC-T6 and LX-2 cells and significantly induced apoptosis. In addition, the cleaved-Caspase-3 levels were increased, the Bax activity was increased, and the Bcl-2 expression was decreased in HSC-T6 and LX-2 cells treated with Sch B. Our study showed that Sch B inhibited the TGF-ß1-induced activity of hepatic stellate cells by promoting apoptosis.


Subject(s)
Antifibrotic Agents/pharmacology , Apoptosis/drug effects , Hepatic Stellate Cells/drug effects , Lignans/pharmacology , Liver Cirrhosis/prevention & control , Polycyclic Compounds/pharmacology , Animals , Cell Line , Cyclooctanes/pharmacology , Hepatic Stellate Cells/pathology , Humans , Liver Cirrhosis/pathology , Protective Agents/pharmacology , Rats
17.
Toxins (Basel) ; 13(9)2021 08 26.
Article in English | MEDLINE | ID: mdl-34564600

ABSTRACT

Patulin (PAT) belongs to the family of food-borne mycotoxins. Our previous studies revealed that PAT caused cytotoxicity in human embryonic kidney cells (HEK293). In the present research, we systematically explored the detailed mechanism of ROS production and ROS clearance in PAT-induced HEK293 cell apoptosis. Results showed that PAT treatment (2.5, 5, 7.5, 10 µM) for 10 h could regulate the expression of genes and proteins involved in the mitochondrial respiratory chain complex, resulting in dysfunction of mitochondrial oxidative phosphorylation and induction of ROS overproduction. We further investigated the role of N-acetylcysteine (NAC), an ROS scavenger, in promoting the survival of PAT-treated HEK293 cells. NAC improves PAT-induced apoptosis of HEK293 cells by clearing excess ROS, modulating the expression of mitochondrial respiratory chain complex genes and proteins, and maintaining normal mitochondrial function. In addition, NAC protects the activity of antioxidant enzymes, maintains normal GSH content, and relieves oxidative damage. Additionally, 4 mM NAC alleviated 7.5 µM PAT-mediated apoptosis through the caspase pathway in HEK293 cells. In summary, our study demonstrated that ROS is significant in PAT-mediated cytotoxicity, which provides valuable insight into the management of PAT-associated health issues.


Subject(s)
Acetylcysteine/metabolism , Acetylcysteine/pharmacology , Apoptosis/drug effects , Oxidative Phosphorylation/drug effects , Oxidative Stress/drug effects , Patulin/toxicity , Reactive Oxygen Species/metabolism , Cells, Cultured/drug effects , HEK293 Cells/drug effects , Humans , Metabolic Networks and Pathways , Mitochondria/metabolism , Mycotoxins/toxicity
18.
Zhongguo Zhong Yao Za Zhi ; 46(9): 2245-2253, 2021 May.
Article in Chinese | MEDLINE | ID: mdl-34047127

ABSTRACT

Schisandrae Chinensis Fructus in six growth stages was taken as materials to study the species and content changes of material basis, which were detected by UPLC, GC and MS chromatography, including lignans, nucleosides, aroma components and fatty acids. The results showed that the texture, color and taste of Schisandrae Chinensis Fructus in six growth stages were different. On the material basis, 12 lignans were detected by UPLC-MS, and the content of total lignans was higher in the samples from late August to early September, among which the highest content of schisandrin was 0.67%±0.01%, followed by schizandrol B, angeloylgomisin H and schisandrin B, and the total content increased with the maturity of Schisandrae Chinensis Fructus. Thirteen kinds of nucleosides were detected by UPLC. The total nucleoside content was the highest in late July samples, in which the contents of uridine and guanosine were higher and decreased after maturity. Aroma components and fatty acids were identified by GC-MS. A total of 53 aroma components were detected and the highest total content was appeared in late August samples, of which ylangene was higher and bergamotene was followed. A total of 24 kinds of fatty acids were detected. The fruits matured basically in August, and the content of fatty acids in the samples was the highest, among which linoleic acid content was top the list and oleic acid was the second. To sum up, the maturity of Schisandra chinensis fruit is related to the content and variety of various material bases, and the growth period has different influences on the quality of Schisandrae Chinensis Fructus. Therefore, the appropriate harvesting time should be determined according to the change law of target components. The results of this study can provide reference for the quality evaluation of Schisandrae Chinensis Fructus material basis.


Subject(s)
Drugs, Chinese Herbal , Lignans , Schisandra , Chromatography, Liquid , Fruit/chemistry , Lignans/analysis , Tandem Mass Spectrometry
19.
Phytother Res ; 35(6): 3130-3144, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33905145

ABSTRACT

Ginseng saponins (GS) are the main active compounds in Panax ginseng and have been proven to be highly effective in attenuating the side effects of chemotherapy. However, there have been no reports on the mechanism of action of GS. Treatment with GS has certain benefits, including decreasing the toxicity levels in the liver [alanine aminotransferase (ALT), albumin (ALB), alkaline phosphatase (ALP), aspartate transaminase (AST)], reducing oxidative stress [malondialdehyde (MDA), nitric oxide (NO)], diminishing inflammatory factors [interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) levels], and augmenting the levels of glutathione (GSH) and superoxide dismutase (SOD). The pharmacokinetics study showed that the area under the curve from 0 to 24 hr (AUC 0-24 hr) of 4-ketocyclophosphamide (4-KetoCTX) and carboxyphosphamide (CPM) was significantly increased after GS treatment. This study found that GS treatment can reduce chloroacetaldehyde (CAA) production by affecting CYP3A4, CYP2B6, and CYP2C9 protein expression in the liver. For the metabolomics study, GS attenuated the abnormalities of amino acid metabolic pathways in CP-induced liver injuries of rats and significantly enhanced the l-arginine level while reducing the serum nitric oxide (NO) level. This outcome was confirmed by the inhibition of the activities of NO synthase in the liver of rats.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Cyclophosphamide/toxicity , Panax/chemistry , Saponins/pharmacology , Alanine Transaminase/blood , Animals , Arginine/metabolism , Aspartate Aminotransferases/blood , Cytochrome P-450 Enzyme System/metabolism , Glutathione/metabolism , Male , Malondialdehyde/metabolism , Metabolomics , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism
20.
Biochem Biophys Res Commun ; 530(4): 658-664, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32768191

ABSTRACT

Ginsenoside Rk1, a saponin component produced by heat-processed ginseng, possesses anti-inflammatory and antitumor activities. The aim of our study was to explore the effects of Rk1 on Lipopolysaccharide (LPS)-induced depression-like behavior in mice and to observe its effects on oxidative stress, the inflammatory response and brain-derived neurotrophic factor (BDNF) - tropomyosin-related kinase B (TrkB) signaling. After mice were pretreated with Rk1 (5, 10, and 20 mg/kg), the immobility time in both the forced swimming test (FST) and the tail suspension test (TST) was reduced, suggesting that Rk1 effectively improved depression-like symptoms. Rk1 (10 and 20 mg/kg) and Fluoxetine (Flu, 20 mg/kg) increased the activity of the antioxidant enzyme SOD in the brain and protected against lipid peroxidation. Different concentrations of Rk1 (10 and 20 mg/kg) and Flu significantly decreased the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1 in serum, while Rk1 (5, 10, and 20 mg/kg) and Flu reduced the concentrations of IL-6 in a dose-dependent manner. Western blot analysis showed that the administration of Rk1 (20 mg/kg) and Flu significantly downregulated the level of Sirt1 and that Rk1 (5, 10, and 20 mg/kg) and Flu inhibited the p-NF-κb/NF-κb and p-IκB-α/IκB-α ratios, which indicated that the neuroprotective effect of Rk1 may be related to the suppression of inflammation. In addition 5, 10 and 20 mg/kg Rk1 significantly attenuated the LPS-induced decreases in BDNF and TrkB. These results indicated that Rk1 acts as an antidepressant through its antioxidant activity, the inhibition of neuroinflammation, and the positive regulation of the BDNF-TrkB pathway. This study may help develop active ginsenoside-based compounds for neurodegenerative diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Ginsenosides/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/pharmacology , Depression/chemically induced , Depression/metabolism , Depressive Disorder/chemically induced , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Ginsenosides/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides , Male , Mice , Mice, Inbred ICR , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...