Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 735
Filter
1.
World J Microbiol Biotechnol ; 40(7): 216, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802708

ABSTRACT

Poor thermostability reduces the industrial application value of κ-carrageenase. In this study, the PoPMuSiC algorithm combined with site-directed mutagenesis was applied to improve the thermostability of the alkaline κ-carrageenase from Pseudoalteromonas porphyrae. The mutant E154A with improved thermal stability was successfully obtained using this strategy after screening seven rationally designed mutants. Compared with the wild-type κ-carrageenase (WT), E154A improved the activity by 29.4% and the residual activity by 51.6% after treatment at 50 °C for 30 min. The melting temperature (Tm) values determined by circular dichroism were 66.4 °C and 64.6 °C for E154A and WT, respectively. Molecular dynamics simulation analysis of κ-carrageenase showed that the flexibility decreased within the finger regions (including F1, F2, F3, F5 and F6) and the flexibility improved in the catalytic pocket area of the mutant E154A. The catalytic tunnel dynamic simulation analysis revealed that E154A led to enlarged catalytic tunnel volume and increased rigidity of the enzyme-substrate complex. The increasing rigidity within the finger regions and more flexible catalytic pocket of P. porphyrae κ-carrageenase might be a significant factor for improvement of the thermostability of the mutant κ-carrageenase E154A. The proposed rational design strategy could be applied to improve the enzyme kinetic stability of other industrial enzymes. Moreover, the hydrolysates of κ-carrageenan digested by the mutant E154A demonstrated increased scavenging activities against hydroxyl (OH) radicals and 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radicals compared with the undigested κ-carrageenan.


Subject(s)
Catalytic Domain , Enzyme Stability , Glycoside Hydrolases , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Pseudoalteromonas , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Pseudoalteromonas/enzymology , Pseudoalteromonas/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Kinetics , Temperature , Circular Dichroism , Protein Conformation , Carrageenan/metabolism
2.
Crit Rev Biotechnol ; : 1-19, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797672

ABSTRACT

Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using Phaffia rhodozyma. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in P. rhodozyma, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as crtYB, crtS, and crtI, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in P. rhodozyma and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.

3.
Research (Wash D C) ; 7: 0386, 2024.
Article in English | MEDLINE | ID: mdl-38818382

ABSTRACT

Stochastic resonance (SR) typically manifests in nonlinear systems, wherein the detection of a weak signal is bolstered by the addition of noise. Since its first discovery in a study of ice ages on Earth, various types of SRs have been observed in biological and physical systems and have been implemented in sensors to benefit from noise. However, a universally designed sensor architecture capable of accommodating different types of SRs has not been proposed, and the widespread applications of SRs in daily environments have not yet been demonstrated. Here, we propose a sensor architecture to simultaneously realize multi-type SRs and demonstrate their wide applications in mechanical, optical, and acoustic sensing domains. In particular, we find the coexistence of excitable SR and bistable SR in a sensor architecture composed of wirelessly coupled inductor-capacitor resonators connected to a nonlinearly saturable amplifier. In both types of SRs, adding noise to the system leads to a characteristic noise-enhanced signal-to-noise ratio (SNR). We further validate our findings through mechanical, optical, and acoustic sensing experiments and obtain noise-enhanced SNR by 9 dB, 3 dB, and 7 dB, respectively, compared to the standard methods devoid of SR integration. Our findings provide a general strategy to design various types of SRs and pave the way for the development of a distinctive class of sensors leveraging environmental noise, with potential applications ranging from biomedical devices to ambient sensing.

4.
Adv Sci (Weinh) ; : e2401394, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715382

ABSTRACT

Currently, the typical combination therapy of programmed death ligand-1 (PD-L1) antibodies with radiotherapy (RT) still exhibits impaired immunogenic antitumor response in clinical due to lessened DNA damage and acquired immune tolerance via the upregulation of some other immune checkpoint inhibitors. Apart from this, such combination therapy may raise the occurrence rate of radiation-induced lung fibrosis (RIPF) due to enhanced systemic inflammation, leading to the ultimate death of cancer patients (average survival time of about 3 years). Therefore, it is newly revealed that mitochondria energy metabolism regulation can be used as a novel effective PD-L1 and transforming growth factor-ß (TGF-ß) dual-downregulation method. Following this, IR-TAM is prepared by conjugating mitochondria-targeted heptamethine cyanine dye IR-68 with oxidative phosphorylation (OXPHOS) inhibitor Tamoxifen (TAM), which then self-assembled with albumin (Alb) to form IR-TAM@Alb nanoparticles. By doing this, tumor-targeting IR-TAM@Alb nanoparticle effectively reversed tumor hypoxia and depressed PD-L1 and TGF-ß expression to sensitize RT. Meanwhile, due to the capacity of heptamethine cyanine dye in targeting RIPF and the function of TAM in depressing TGF-ß, IR-TAM@Alb also ameliorated fibrosis development induced by RT.

5.
J Headache Pain ; 25(1): 72, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714978

ABSTRACT

BACKGROUND: Due to the high mortality and disability rate of intracranial hemorrhage, headache is not the main focus of research on cerebral arteriovenous malformation (AVM), so research on headaches in AVM is still scarce, and the clinical understanding is shallow. This study aims to delineate the risk factors associated with headaches in AVM and to compare the effectiveness of various intervention treatments versus conservative treatment in alleviating headache symptoms. METHODS: This study conducted a retrospective analysis of AVMs who were treated in our institution from August 2011 to December 2021. Multivariable logistic regression analysis was employed to assess the risk factors for headaches in AVMs with unruptured, non-epileptic. Additionally, the effectiveness of different intervention treatments compared to conservative management in alleviating headaches was evaluated through propensity score matching (PSM). RESULTS: A total of 946 patients were included in the analysis of risk factors for headaches. Multivariate logistic regression analysis identified that female (OR 1.532, 95% CI 1.173-2.001, p = 0.002), supply artery dilatation (OR 1.423, 95% CI 1.082-1.872, p = 0.012), and occipital lobe (OR 1.785, 95% CI 1.307-2.439, p < 0.001) as independent risk factors for the occurrence of headaches. There were 443 AVMs with headache symptoms. After propensity score matching, the microsurgery group (OR 7.27, 95% CI 2.82-18.7 p < 0.001), stereotactic radiosurgery group(OR 9.46, 95% CI 2.26-39.6, p = 0.002), and multimodality treatment group (OR 8.34 95% CI 2.87-24.3, p < 0.001) demonstrate significant headache relief compared to the conservative group. However, there was no significant difference between the embolization group (OR 2.24 95% CI 0.88-5.69, p = 0.091) and the conservative group. CONCLUSIONS: This study identified potential risk factors for headaches in AVMs and found that microsurgery, stereotactic radiosurgery, and multimodal therapy had significant benefits in headache relief compared to conservative treatment. These findings provide important guidance for clinicians when developing treatment options that can help improve overall treatment outcomes and quality of life for patients.


Subject(s)
Headache , Intracranial Arteriovenous Malformations , Humans , Female , Intracranial Arteriovenous Malformations/complications , Intracranial Arteriovenous Malformations/therapy , Male , Headache/etiology , Headache/therapy , Adult , Retrospective Studies , Risk Factors , Middle Aged , Young Adult , Conservative Treatment/methods , Treatment Outcome , Embolization, Therapeutic/methods , Adolescent
6.
J Transl Med ; 22(1): 437, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720345

ABSTRACT

BACKGROUND: Biological-derived hydroxyapatite is widely used as a bone substitute for addressing bone defects, but its limited osteoconductive properties necessitate further improvement. The osteo-immunomodulatory properties hold crucial promise in maintaining bone homeostasis, and precise modulation of macrophage polarization is essential in this process. Metabolism serves as a guiding force for immunity, and fluoride modification represents a promising strategy for modulating the osteoimmunological environment by regulating immunometabolism. In this context, we synthesized fluorinated porcine hydroxyapatite (FPHA), and has demonstrated its enhanced biological properties and osteogenic capacity. However, it remains unknown whether and how FPHA affects the immune microenvironment of the bone defects. METHODS: FPHA was synthesized and its composition and structural properties were confirmed. Macrophages were cultured with FPHA extract to investigate the effects of FPHA on their polarization and the related osteo-immune microenvironment. Furthermore, total RNA of these macrophages was extracted, and RNA-seq analysis was performed to explore the underlying mechanisms associated with the observed changes in macrophages. The metabolic states were evaluated with a Seahorse analyzer. Additionally, immunohistochemical staining was performed to evaluate the macrophages response after implantation of the novel bone substitutes in critical size calvarial defects in SD rats. RESULTS: The incorporation of fluoride ions in FPHA was validated. FPHA promoted macrophage proliferation and enhanced the expression of M2 markers while suppressing the expression of M1 markers. Additionally, FPHA inhibited the expression of inflammatory factors and upregulated the expression of osteogenic factors, thereby enhancing the osteogenic differentiation capacity of the rBMSCs. RNA-seq analysis suggested that the polarization-regulating function of FPHA may be related to changes in cellular metabolism. Further experiments confirmed that FPHA enhanced mitochondrial function and promoted the metabolic shift of macrophages from glycolysis to oxidative phosphorylation. Moreover, in vivo experiments validated the above results in the calvarial defect model in SD rats. CONCLUSION: In summary, our study reveals that FPHA induces a metabolic shift in macrophages from glycolysis to oxidative phosphorylation. This shift leads to an increased tendency toward M2 polarization in macrophages, consequently creating a favorable osteo-immune microenvironment. These findings provide valuable insights into the impact of incorporating an appropriate concentration of fluoride on immunometabolism and macrophage mitochondrial function, which have important implications for the development of fluoride-modified immunometabolism-based bone regenerative biomaterials and the clinical application of FPHA or other fluoride-containing materials.


Subject(s)
Durapatite , Glycolysis , Macrophages , Oxidative Phosphorylation , Rats, Sprague-Dawley , Animals , Durapatite/chemistry , Macrophages/metabolism , Macrophages/drug effects , Oxidative Phosphorylation/drug effects , Glycolysis/drug effects , Rats , Swine , Cell Proliferation/drug effects , Male , Osteogenesis/drug effects , Skull/pathology , Skull/drug effects , Mice , Cellular Microenvironment/drug effects , RAW 264.7 Cells , Bone and Bones/metabolism , Bone and Bones/drug effects
7.
Clin Interv Aging ; 19: 705-714, 2024.
Article in English | MEDLINE | ID: mdl-38716142

ABSTRACT

Background: As a nutritional indicator, a lower level of geriatric nutritional risk index (GNRI) has been suggested as a predictor for poor prognosis in acute coronary syndrome (ACS). However, whether GNRI could improve the predictive value of the Global Registry of Acute Coronary Events (GRACE) score for the prognosis in elderly patients with non-ST segment elevation myocardial infarction (NSTEMI) after PCI remains unclear. Methods: A total of 446 elderly patients with NSTEMI after percutaneous coronary intervention (PCI) were consecutively enrolled. Patients were divided into major adverse cardiovascular and cerebrovascular events (MACCE) group and control group according to the occurrence of MACCE during one year follow up. The clinical parameters including GNRI were compared to investigate the predictors for MACCE. The performance after the addition of GNRI to the GRACE score for predicting MACCE was determined. Results: A total of 68 patients developed MACCE. In unadjusted analyses, the rate of MACCE was significantly higher in the 93.8

Subject(s)
Geriatric Assessment , Non-ST Elevated Myocardial Infarction , Nutrition Assessment , Percutaneous Coronary Intervention , Humans , Percutaneous Coronary Intervention/adverse effects , Aged , Female , Male , Geriatric Assessment/methods , Prognosis , Risk Assessment , Risk Factors , Aged, 80 and over , Predictive Value of Tests , Logistic Models , Nutritional Status
8.
Plant Commun ; : 100942, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38720463

ABSTRACT

Feralization is an important evolutionary process, but the mechanisms behind it remain poorly understood. Here, we use the ancient fiber crop, ramie (Boehmeria nivea (L.) Gaudich.) as a model to investigate genomic changes associated with both domestication and fertilization. We first produced a chromosome-scale de novo genome assembly of feral ramie and investigated structural variations between feral and domesticated ramie genomes. Next, 915 accessions from 20 countries were gathered, comprising cultivars, major landraces, feral populations and wild progenitor. Based on whole genome resequencing of these accessions, the most comprehensive ramie genomic variation map to date was constructed. Phylogenetic, demographic, and admixture signal detection analyses indicate that feral ramie is of exoferal or exo-endo origin, i.e., descended from hybridization between domesticated ramie and wild progenitor or ancient landraces. Feral ramie has greater genetic diversity than wild or domesticated ramie, and genomic regions affected by natural selection during feralization are different from those under selection during domestication. Ecological analyses showed that feral and domesticated ramie have similar ecological niches which are substantially different from the niche of the wild progenitor, and three environmental variables were associated with habitat-specific adaptation in feral ramie. Our findings advance our understanding of feralization, providing a scientific basis for the excavation of new crop germplasm resources and offering novel insights into the evolution of feralization in nature.

9.
World J Diabetes ; 15(5): 988-1000, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38766434

ABSTRACT

BACKGROUND: Visceral obesity is increasingly prevalent among adolescents and young adults and is commonly recognized as a risk factor for type 2 diabetes. Estrogen [17ß-estradiol (E2)] is known to offer protection against obesity via diverse me-chanisms, while its specific effects on visceral adipose tissue (VAT) remain to be fully elucidated. AIM: To investigate the impact of E2 on the gene expression profile within VAT of a mouse model of prediabetes. METHODS: Metabolic parameters were collected, encompassing body weight, weights of visceral and subcutaneous adipose tissues (VAT and SAT), random blood glucose levels, glucose tolerance, insulin tolerance, and overall body composition. The gene expression profiles of VAT were quantified utilizing the Whole Mouse Genome Oligo Microarray and subsequently analyzed through Agilent Feature Extraction software. Functional and pathway analyses were conducted employing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, respectively. RESULTS: Feeding a high-fat diet (HFD) moderately increased the weights of both VAT and SAT, but this increase was mitigated by the protective effect of endogenous E2. Conversely, ovariectomy (OVX) led to a significant increase in VAT weight and the VAT/SAT weight ratio, and this increase was also reversed with E2 treatment. Notably, OVX diminished the expression of genes involved in lipid metabolism compared to HFD feeding alone, signaling a widespread reduction in lipid metabolic activity, which was completely counteracted by E2 administration. This study provides a comprehensive insight into E2's local and direct protective effects against visceral adiposity in VAT at the gene level. CONCLUSION: In conclusion, the present study demonstrated that the HFD-induced over-nutritional challenge disrupted the gene expression profile of visceral fat, leading to a universally decreased lipid metabolic status in E2 deficient mice. E2 treatment effectively reversed this condition, shedding light on the mechanistic role and therapeutic potential of E2 in combating visceral obesity.

10.
J Pharm Biomed Anal ; 246: 116211, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38759323

ABSTRACT

Osteoporosis (OP) is a metabolic bone disease that can lead to major health challenges. The theory of Traditional Chinese medicine believes that kidney-Yin deficiency (KYD) is the main cause of postmenopausal osteoporosis. This study was aimed to investigate the effect of EZW on anti-osteoporosis with KYD, and explore potential mechanisms from the perspective of the kidney, bone and bone marrow through analysis of metabolomics and proteomics. The model of OP with KYD was established by rats treated with bilateral ovariectomy (OVX), and then given intragastric administration of thyroid and reserpine to induce. Micro-CT was applied to determine the microstructures of bone. Serum levels associated with bone turnover markers and kidney-Yin deficiency were detected by enzyme-linked immunosorbent (ELISA) assay. The differential metabolites in the kidney, bone and bone marrow were analyzed by metabolomics. The differentially expressed proteins in these three tissues were detected via proteomics. The findings suggested that EZW could alleviate a variety of metabolites and proteins among the kidney, bone and bone marrow, primarily in amino acid metabolism, carbohydrate metabolism, nucleotide metabolism and lipid metabolism, thus leading to improvements of OP with KYD, which provided theoretical basis for clinical treatment of EZW on OP with KYD.

11.
PeerJ ; 12: e17264, 2024.
Article in English | MEDLINE | ID: mdl-38803580

ABSTRACT

Background: Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder (FGID) with heterogeneous clinical presentations. There are no clear testing parameters for its diagnosis, and the complex pathophysiology of IBS and the limited time that doctors have to spend with patients makes it difficult to adequately educate patients in the outpatient setting. An increased awareness of IBS means that patients are more likely to self-diagnose and self-manage IBS based on their own symptoms. These factors may make patients more likely to turn to Internet resources. Wikipedia is the most popular online encyclopedia among English-speaking users, with numerous validations. However, in Mandarin-speaking regions, the Baidu Encyclopedia is most commonly used. There have been no studies on the reliability, readability, and objectivity of IBS information on the two sites. This is an urgent issue as these platforms are accessed by approximately 1.45 billion people. Objective: We compared the IBS content on Wikipedia (in English) and Baidu Baike (in Chinese), two online encyclopedias, in terms of reliability, readability, and objectivity. Methods: The Baidu Encyclopedia (in Chinese) and Wikipedia (in English) were evaluated based on the Rome IV IBS definitions and diagnoses. All possible synonyms and derivatives for IBS and IBS-related FGIDs were screened and identified. Two gastroenterology experts evaluated the scores of articles for both sites using the DISCERN instrument, the Journal of the American Medical Association scoring system (JAMA), and the Global Quality Score (GQS). Results: Wikipedia scored higher overall with DISCERN (p < .0001), JAMA (p < .0001) and GQS (p < .05) than the Baidu Encyclopedia. Specifically, Wikipedia scored higher in DISCERN Section 1 (p < .0001), DISCERN Section 2 (p < .01), DISCERN Section 3 (p < .001), and the General DISCERN score (p < .0001) than the Baidu Encyclopedia. Both sites had low DISCERN Section 2 scores (p = .18). Wikipedia also had a larger percentage of high quality scores in total DISCERN, DISCERN Section 1, and DISCERN Section 3 (p < .0001, P < .0001, P < .0004, respectively, based on the above 3 (60%) rule). Conclusions: Wikipedia provides more reliable, higher quality, and more objective IBS-related health information than the Baidu Encyclopedia. However, there should be improvements in the information quality for both sites. Medical professionals and institutions should collaborate with these online platforms to offer better health information for IBS.


Subject(s)
Internet , Irritable Bowel Syndrome , Irritable Bowel Syndrome/diagnosis , Humans , Comprehension , Encyclopedias as Topic , Reproducibility of Results , Consumer Health Information/standards
12.
Front Biosci (Landmark Ed) ; 29(5): 172, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38812299

ABSTRACT

BACKGROUND: Gastric adenocarcinoma (GAC) is a malignant tumor with the highest incidence in the digestive system. Macrophages have been proven to play important roles in tumor microenvironment. METHODS: Herein, single-cell RNA sequencing (scRNA-seq) profiles from the Gene Expression Omnibus (GEO) and bulk RNA-seq data from the Cancer Genome Atlas (TCGA) database were utilized to construct a macrophage marker gene signature (MMGS) to predict the prognosis of GAC patients. Subsequently, a risk score model based on the MMGS was built to predict the prognosis of GAC patients; further, this was validated in the GEO cohort. The risk score categorized patients into the high- and low-risk groups. A nomogram model based on the risk score and clinic-pathological characteristics was developed. RESULTS: Seven genes, ABCA1, CTHRC1, GADD45B, NPC2, PLTP, PRSS23, and RNASE1, were included in the risk score model. Patients with a low-risk score showed a better prognosis. The MMGS had good sensitivity and specificity for predicting the prognosis inGAC patients. The risk score was an independent prognostic factor. The constructed nomogram exhibited favorable predictability and reliability for predicting GAC prognosis. CONCLUSION: In conclusion, the risk score model based on the seven MMGSs performed well in the predicting prognosis of GAC patients. Our study may provide new insights into clinical decision-making for the personalized treatment of patients with gastric cancer (GC).


Subject(s)
Adenocarcinoma , Biomarkers, Tumor , Computational Biology , Nomograms , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Prognosis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Computational Biology/methods , Biomarkers, Tumor/genetics , Male , Female , Gene Expression Regulation, Neoplastic , Macrophages/metabolism , Tumor Microenvironment/genetics , Middle Aged , Transcriptome , Gene Expression Profiling/methods , Aged
13.
Article in English | MEDLINE | ID: mdl-38697788

ABSTRACT

BACKGROUND AND PURPOSE: Rupture is the most life-threatening manifestation of cerebral AVMs. This study aimed to explore the hemodynamic mechanism of AVM rupture. We introduced a new quantitative DSA parameter that can reflect the degree of intranidal blood stasis, called the lesion-filling index. MATERIALS AND METHODS: This study examined patients with AVMs who had undergone both DSA and MR imaging between 2013 and 2014. Clinical presentations, angioarchitecture, and hemodynamic parameters generated from quantitative DSA were analyzed using univariate and multivariable logistic regression. The lesion-filling index was defined as the arterial diagnostic window divided by the volume of the AVM. To assess the correlation between the lesion-filling index and rupture, we incorporated the lesion-filling index into 2 published prediction models widely recognized for predicting AVM rupture risk, R2eD and VALE. The DeLong test was used to examine whether the addition of the lesion-filling index improved predictive efficacy. RESULTS: A total of 180 patients with AVMs were included. The mean lesion-filling index values in the ruptured group were higher compared with the unruptured group (390.27 [SD, 919.81] versus 49.40 [SD, 98.25]), P < .001). A higher lesion-filling index was significantly correlated with AVM rupture in 3 different multivariable logistic models, adjusting for angioarchitecture factors (OR = 1.004, P = .02); hemodynamic factors (OR = 1.005, P = .009); and combined factors (OR = 1.004, P = .03). Both R2eD (area under the curve, 0.601 versus 0.624; P = .15) and VALE (area under the curve, 0.603 versus 0.706; P < .001) predictive models showed improved predictive performance after incorporating the lesion-filling index and conducting 10-fold cross-validation. CONCLUSIONS: The lesion-filling index showed a strong correlation with AVM rupture, suggesting that overperfusion is the hemodynamic mechanism leading to AVM rupture.

14.
Front Immunol ; 15: 1382099, 2024.
Article in English | MEDLINE | ID: mdl-38665912

ABSTRACT

Introduction: Chimerism is closely correlated with disease relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, chimerism rate is dynamic changes, and the sensitivity of different chimerism requires further research. Methods: To investigate the predictive value of distinct chimerism for relapse, we measured bone marrow (BM), peripheral blood (PB), and T-cell (isolated from BM) chimerism in 178 patients after allo-HSCT. Results: Receiver operating characteristic (ROC) curve showed that T-cell chimerism was more suitable to predict relapse after allo-HSCT compared with PB and BM chimerism. The cutoff value of T-cell chimerism for predicting relapse was 99.45%. Leukemia and myelodysplastic syndrome (MDS) relapse patients' T-cell chimerism was a gradual decline from 2 months to 9 months after allo-HSCT. Higher risk of relapse and death within 1 year after allo-HSCT. The T-cell chimerism rates in remission and relapse patients were 99.43% and 94.28% at 3 months after allo-HSCT (P = 0.009), 99.31% and 95.27% at 6 months after allo-HSCT (P = 0.013), and 99.26% and 91.32% at 9 months after allo-HSCT (P = 0.024), respectively. There was a significant difference (P = 0.036) for T-cell chimerism between early relapse (relapse within 9 months after allo-HSCT) and late relapse (relapse after 9 months after allo-HSCT) at 2 months after allo-HSCT. Every 1% increase in T-cell chimerism, the hazard ratio for disease relapse was 0.967 (95% CI: 0.948-0.987, P<0.001). Discussion: We recommend constant monitoring T-cell chimerism at 2, 3, 6, and 9 months after allo-HSCT to predict relapse.


Subject(s)
Hematopoietic Stem Cell Transplantation , Recurrence , T-Lymphocytes , Transplantation Chimera , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Adult , Middle Aged , T-Lymphocytes/immunology , Transplantation Chimera/immunology , Adolescent , Young Adult , Child , Child, Preschool , Chimerism , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/immunology , Leukemia/therapy , Leukemia/immunology , Leukemia/mortality , Predictive Value of Tests , Graft vs Host Disease/immunology , Graft vs Host Disease/etiology
15.
Comput Struct Biotechnol J ; 23: 1608-1618, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38680874

ABSTRACT

Antlers are hallmark organ of deer, exhibiting a relatively high growth rate among mammals, and requiring large amounts of nutrients to meet its development. The rumen microbiota plays key roles in nutrient metabolism. However, changes in the microbiota and metabolome in the rumen during antler growth are largely unknown. We investigated rumen microbiota (liquid, solid, ventral epithelium, and dorsal epithelium) and metabolic profiles of sika deer at the early (EG), metaphase (MG) and fast growth (FG) stages. Our data showed greater concentrations of acetate and propionate in the rumens of sika deer from the MG and FG groups than in those of the EG group. However, microbial diversity decreased during antler growth, and was negatively correlated with short-chain fatty acid (SCFA) levels. Prevotella, Ruminococcus, Schaedlerella and Stenotrophomonas were the dominant bacteria in the liquid, solid, ventral epithelium, and dorsal epithelium fractions. The proportions of Stomatobaculum, Succiniclasticum, Comamonas and Anaerotruncus increased significantly in the liquid or dorsal epithelium fractions. Untargeted metabolomics analysis revealed that the metabolites also changed significantly, revealing 237 significantly different metabolites, among which the concentrations of γ-aminobutyrate and creatine increased during antler growth. Arginine and proline metabolism and alanine, aspartate and glutamate metabolism were enhanced. The co-occurrence network results showed that the associations between the rumen microbiota and metabolites different among the three groups. Our results revealed that the different rumen ecological niches were characterized by distinct microbiota compositions, and the production of SCFAs and the metabolism of specific amino acids were significantly changed during antler growth.

16.
Sci Rep ; 14(1): 7672, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561377

ABSTRACT

Lipopolysaccharide (LPS) is known to elicit a robust immune response. This study aimed to investigate the impact of LPS on the transcriptome of human nasal epithelial cells (HNEpC). HNEpC were cultured and stimulated with LPS (1 µg/mL) or an equivalent amount of normal culture medium. Subsequently, total RNA was extracted, purified, and sequenced using next-generation RNA sequencing technology. Differentially expressed genes (DEGs) were identified and subjected to functional enrichment analysis. A protein-protein interaction (PPI) network of DEGs was constructed, followed by Ingenuity Pathway Analysis (IPA) to identify molecular pathways influenced by LPS exposure on HNEpC. Validation of key genes was performed using quantitative real-time PCR (qRT-PCR). A total of 97 DEGs, comprising 48 up-regulated genes and 49 down-regulated genes, were identified. Results from functional enrichment analysis, PPI, and IPA indicated that DEGs were predominantly enriched in chemokine-related signaling pathways. Subsequent qRT-PCR validation demonstrated significant upregulation of key genes in these pathways in LPS-treated HNEpC compared to control cells. In conclusion, LPS intervention profoundly altered the transcriptome of HNEpC, potentially exacerbating inflammatory responses through the activation of chemokine-related signaling pathways.


Subject(s)
Gene Expression Profiling , Lipopolysaccharides , Humans , Gene Expression Profiling/methods , Lipopolysaccharides/pharmacology , Transcriptome , Signal Transduction/genetics , Epithelial Cells , Chemokines/genetics , Computational Biology/methods
17.
Materials (Basel) ; 17(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612083

ABSTRACT

In this paper, ordinary Portland cement, ultrafine cement, polyurethane, and epoxy resin were selected as typical grouting materials. Grouting simulation tests were first conducted to prepare the grouted concrete crack sample. The effect of concrete crack parameters (i.e., crack aperture and roughness), grout water-cement ratio, and grouting pressure on the water-plugging performance of different grouting materials was explored through the impermeability test. The microstructure of grouted concrete cracks was analyzed by means of scanning electron microscopy (SEM) and computed tomography (CT), and the difference in water-plugging performance of different grouting materials was explained at the micro level. The results show that the impermeability of the four grouting materials was ranked as follows: Epoxy resin > polyurethane > ultra-fine cement > ordinary Portland cement. The concrete cracks grouted by epoxy resin have the highest plugging failure water pressure and the lowest permeability, which is the optimal grouting material. The effectiveness of crack grouting in water-plugging was directly proportional to the grouting pressure, provided the pressure did not exceed a certain value. When the pressure surpassed the threshold, the increase in pressure did not have a significant impact on the water plugging performance. For the two cement-based materials, the threshold pressure was 1 MPa, while for the other two chemical grouts, it was 2 MPa. The two cement-based grouts with a water-cement ratio of 0.8 showed optimal water-plugging performance. The water-plugging performance of ordinary Portland cement paste, ultra-fine cement pastes, and polyurethane grout was negatively correlated with crack aperture and positively correlated with crack roughness. However, the water-plugging performance of epoxy resin grout was not affected by crack aperture or roughness.

18.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38682465

ABSTRACT

Vitamin E (VE) is a potent nutritional antioxidant that is critical in alleviating poultry oxidative stress. However, the hydrophobic nature and limited stability of VE restrict its effective utilization. Nanotechnology offers a promising approach to enhance the bioavailability of lipophilic vitamins. The objective of this experiment was to investigate the effects of different sources and addition levels of VE on the growth performance, antioxidant capacity, VE absorption site, and pharmacokinetics of Arbor Acres (AA) broilers. Three hundred and eighty-four 1-d-old AA chicks were randomly allocated into four groups supplemented with 30 and 75 IU/kg VE as regular or nano. The results showed that dietary VE sources had no significant impact on broiler growth performance. However, chickens fed 30 IU/kg VE had a higher average daily gain at 22 to 42 d and 1 to 42 d, and lower feed conversion ratio at 22 to 42 d than 75 IU/kg VE (P < 0.05). Under normal feeding conditions, broilers fed nano VE (NVE) displayed significantly higher superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) enzyme activities and lower malonic dialdehyde (MDA) concentration (P < 0.05). Similarly, NVE had a higher antioxidant effect in the dexamethasone-constructed oxidative stress model. It was found that nanosizing technology had no significant effect on the absorption of VE in the intestinal tract by examining the concentration of VE in the intestinal tract (P > 0.05). However, compared to broilers perfused with regular VE (RVE), the NVE group displayed notably higher absorption rates at 11.5 and 14.5 h (P < 0.05). Additionally, broilers perfused with NVE showed a significant increase in the area under the concentration versus time curve from zero to infinity (AUC0-∞), mean residence time (MRT0-∞), elimination half-life (t1/2z), and peak concentration (Cmax) of VE in plasma (P < 0.05). In summary, nanotechnology provides more effective absorption and persistence of VE in the blood circulation for broilers, which is conducive to the function of VE and further improves the antioxidant performance of broilers.


With the rapid development of intensive farming, factors such as high temperature, harmful gases, high-fat and high-protein diets, and changes in feeding methods have become causes of oxidative stress in animals. Studies have shown that oxidative stress decreases livestock feed intake and slows growth in animals, thereby affecting the quality of livestock products. Antioxidants and micronutrients are commonly added to animal feed to reduce the effects of oxidative stress. Since the progress in nanotechnology, nanovitamins have gained extensive recognition due to their novel qualities, including a high level of adsorption capacity and low toxicity. Therefore, the present study compared the effects of dietary supplementation with different sources of vitamin E (regular, RVE vs. nano, NVE) and varying inclusion levels on the growth performance, antioxidant capacity, VE absorption sites, and pharmacokinetics in AA broilers. The results indicated that supplementing broiler diets with NVE provides superior antioxidant benefits compared to RVE. This improvement is attributed to the enhanced absorption efficiency and extended half-life of NVE, both contributing to increased antioxidant performance of broilers.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Dietary Supplements , Vitamin E , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Animal Feed/analysis , Diet/veterinary , Vitamin E/administration & dosage , Vitamin E/pharmacokinetics , Vitamin E/pharmacology , Dietary Supplements/analysis , Oxidative Stress/drug effects , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Animal Nutritional Physiological Phenomena , Male , Random Allocation
19.
Front Pharmacol ; 15: 1380277, 2024.
Article in English | MEDLINE | ID: mdl-38628645

ABSTRACT

Essential oils are potential alternatives to antibiotics for preventing Candida albicans (C. albicans) infection which is responsible for economic losses in the pigeon industry. Cymbopogon martini essential oil (EO) can inhibit pathogens, particularly fungal pathogens but its potential beneficial effects on C. albicans-infected pigeons remain unclear. Therefore, we investigated the impact of C. martini EO on antioxidant activity, immune response, intestinal barrier function, and intestinal microbiota in C. albicans-infected pigeons. The pigeons were divided into four groups as follows: (1) NC group: C. albicans uninfected/C. martini EO untreated group; (2) PC group: C. albicans infected/C. martini EO untreated group; (3) LPA group: C. albicans infected/1% C. martini EO treated group; and (4) HPA group: C. albicans infected/2% C. martini EO treated group. The pigeons were infected with C. albicans from day of age 35 to 41 and treated with C. martini EO from day of age 42 to 44, with samples collected on day of age 45 for analysis. The results demonstrated that C. martini EO prevented the reduction in the antioxidant enzymes SOD and GSH-Px causes by C. albicans challenge in pigeons. Furthermore, C. martini EO could decrease the relative expression of IL-1ß, TGF-ß, and IL-8 in the ileum, as well as IL-1ß and IL-8 in the crop, while increasing the relative expression of Claudin-1 in the ileum and the crop and Occludin in the ileum in infected pigeons. Although the gut microbiota composition was not significantly affected by C. martini EO, 2% C. martini EO increased the abundance of Alistipes and Pedobacter. In conclusion, the application of 2% C. martini EO not only enhanced the level of antioxidant activity and the expression of genes related to intestinal barrier function but also inhibited inflammatory genes in C. albicans-infected pigeons and increased the abundance of gut bacteria that are resistant to C. albicans.

20.
Stem Cells Int ; 2024: 5388064, 2024.
Article in English | MEDLINE | ID: mdl-38633381

ABSTRACT

Objectives: Traditional Chinese medicine Cortex Eucommiae has been used to treat bone fracture for hundreds of years, which exerts a significant improvement in fracture healing. Aucubin, a derivative isolated from Cortex Eucommiae, has been demonstrated to possess anti-inflammatory, immunoregulatory, and antioxidative potential. In the present study, our aim was to explore its function in bone regeneration and elucidate the underlying mechanism. Materials and Methods: The effects of Aucubin on osteoblast and osteoclast were examined in mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) and RAW 264.7 cells, respectively. Moreover, the lncRNA H19 and Wnt/ß-catenin signaling were detected by qPCR examination, western blotting, and luciferase activity assays. Using the femur fracture mice model, the in vivo effect of Aucubin on bone formation was monitored by X-ray, micro-CT, histomorphometry, and immunohistochemistry staining. Results: In the present study, Aucubin was found to significantly promote osteogenic differentiation in vitro and stimulated bone formation in vivo. Regarding to the underlying mechanism, H19 was found to be obviously upregulated by Aucubin in MSCs and thus induced the activation of Wnt/ß-catenin signaling. Moreover, H19 knockdown partially reversed the Aucubin-induced osteogenic differentiation and successfully suppressed the activation of Wnt/ß-catenin signaling. We therefore suggested that Aucubin induced the activation of Wnt/ß-catenin signaling through promoting H19 expression. Conclusion: Our results demonstrated that Aucubin promoted osteogenesis in vitro and facilitated fracture healing in vivo through the H19-Wnt/ß-catenin regulatory axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...