Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 819
Filter
1.
J Chem Phys ; 160(21)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38828827

ABSTRACT

Substituting slow oxygen evolution reaction (OER) with thermodynamically favorable urea oxidation reaction (UOR) is considered as one of the feasible strategies for achieving energy-saving hydrogen production. Herein, a uniform layer of NiMoO4 nanorods was grown on nickel foam by a hydrothermal method. Then, a series of Ni-MoOx/NF-X nanorod catalysts comprising Ni/NiO and MoOx (MoO2/MoO3) were prepared through regulating annealing atmosphere and reduction temperature. The optimized Ni-MoOx/NF-3 with a large accessible specific area can act as a bifunctional catalyst for electrocatalytic anodic UOR and cathodic hydrogen evolution reaction (HER). At a current density of 100 mA cm-2, the introduction of urea can significantly reduce the overpotential of Ni-MoOx/NF-3 by 210 mV compared to OER. In addition, Ni-MoOx/NF-3 has a higher intrinsic activity than other catalysts. It only requires -0.21 and 1.38 V to reach 100 mA cm-2 in HER and UOR, respectively. Such an excellent performance can be attributed to the synergistic function between Ni and MoOx. The presence of metallic Ni and reduced MoOx in pairs is beneficial for improving the electrical conductivity and modulating the electronic structure, resulting in enhancing the electrocatalytic performance. When assembling Ni-MoOx/NF-3 into an overall urea-water splitting system, it can achieve energy-saving hydrogen production and effective removal of urea-rich wastewater.

3.
Front Oncol ; 14: 1309803, 2024.
Article in English | MEDLINE | ID: mdl-38826789

ABSTRACT

Introduction: Since the first report, primary mediastinal seminoma has a low incidence in the population, and it mainly affects young and middle-aged men, is clinically rare, and accounts for a very small proportion of mediastinal tumors. In this study, we describe the first case of primary mediastinal seminoma with azoospermia and hypothesize that the coexistence of the two disorders may not be a coincidence. Case report: A 16-year-old man presented with chest tightness and chest pain, a mediastinal mass on chest CT, and abnormal 18F-fluoro-deoxyglucose uptake on a PET-CT scan. By biopsy of the mass, the pathological diagnosis was a primary mediastinal seminoma. Because chemotherapy is included in the treatment of the tumor, the patient underwent sperm freezing before treatment, considering that chemotherapy can affect fertility, but the patient was diagnosed with azoospermia. Finally, the patient underwent tumor resection and postoperative chemotherapy. No tumor recurrence was observed at the current follow-up. Conclusion: Primary mediastinal seminoma is mainly confirmed by histopathological examination, and surgery and chemoradiotherapy are the current treatments. In patients with mediastinal seminoma or azoospermia, doctors should be aware that the two disorders may coexist, especially in men who have fertility requirements or long-term infertility, and that examination of the mediastinum and semen may lead to unexpected findings in the diagnosis and treatment. For mediastinal germ cell tumors, genetic testing is of great value in the treatment of tumors and the prediction of associated diseases. Future studies exploring the potential correlation between mediastinal seminoma and azoospermia will be prospective.

4.
BMC Gastroenterol ; 24(1): 153, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702642

ABSTRACT

BACKGROUND: Liver diseases were significant source of early readmission burden. This study aimed to evaluate the 30-day unplanned readmission rates, causes of readmissions, readmission costs, and predictors of readmission in patients with acute liver failure (ALF). METHODS: Patients admitted for ALF from 2019 National Readmission Database were enrolled. Weighted multivariable logistic regression models were applied and based on Directed Acyclic Graphs. Incidence, causes, cost, and predictors of 30-day unplanned readmissions were identified. RESULTS: A total of 3,281 patients with ALF were enrolled, of whom 600 (18.3%) were readmitted within 30 days. The mean time from discharge to early readmission was 12.6 days. The average hospital cost and charge of readmission were $19,629 and $86,228, respectively. The readmissions were mainly due to liver-related events (26.6%), followed by infection (20.9%). The predictive factors independently associated with readmissions were age, male sex (OR 1.227, 95% CI 1.023-1.472; P = 0.028), renal failure (OR 1.401, 95% CI 1.139-1.723; P = 0.001), diabetes with chronic complications (OR 1.327, 95% CI 1.053-1.672; P = 0.017), complicated hypertension (OR 1.436, 95% CI 1.111-1.857; P = 0.006), peritoneal drainage (OR 1.600, 95% CI 1.092-2.345; P = 0.016), etc. CONCLUSIONS: Patients with ALF are at relatively high risk of early readmission, which imposes a heavy medical and economic burden on society. We need to increase the emphasis placed on early readmission of patients with ALF and establish clinical strategies for their management.


Subject(s)
Databases, Factual , Liver Failure, Acute , Patient Readmission , Humans , Patient Readmission/statistics & numerical data , Male , Female , Middle Aged , Liver Failure, Acute/economics , Liver Failure, Acute/therapy , Risk Factors , Adult , Aged , Hospital Costs/statistics & numerical data , Sex Factors , Time Factors , Logistic Models , Age Factors , Incidence
5.
ACS Omega ; 9(17): 19043-19050, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708255

ABSTRACT

There have been few studies on the role of nanofluids in oil displacement and injection parameters, despite their significant impact on the oil displacement effect. To enhance oil recovery in an ultralow-permeability reservoir, the nanosized oil-displacement agent with nano-SiO2 modified by a silane coupling agent as a main component was selected for the first time in the Changqing oilfield. To assess the performance of the nanofluid, various factors such as particle size, contact angle, interfacial tension, and emulsion stability were taken into consideration. The oil displacement effect of nanofluids was evaluated by a microscopic model and ultralow-permeability core displacement experiment, and its optimal injection parameters were determined. The average particle size of the nano-oil displacement agent is 22-30 nm. It can change the wetting condition of the rock from oil-wet to water-wet and reduce the oil-water interfacial tension. Even at 80 °C, the emulsion formed by the agent remained stable. The oil displacement experiment shows that the nano-oil displacement agent whose injection pressure increases can displace the residual oil trapped in small pores that cannot be affected by conventional water flooding. The injection mode of "nanoflooding agent drive + water drive + nanoflooding agent drive", injection rate of 0.1 mL/min, injection concentration of 0.5%, and injection volume of 0.5 PV (0.25 PV per segment), which can effectively guide the injection of the oil displacement agent, achieve the best oil displacement effect.

6.
J Vis Exp ; (207)2024 May 10.
Article in English | MEDLINE | ID: mdl-38801272

ABSTRACT

Gastric cancer is a common heterogeneous tumor. Most patients have advanced gastric cancer at the time of diagnosis and often need chemotherapy. Although 5-fluorouracil (5-FU) is widely used for treatment, its therapeutic sensitivity and drug tolerance still need to be determined, which emphasizes the importance of individualized administration. Pharmacogenetics can guide the clinical implementation of individualized treatment. Single nucleotide polymorphisms (SNPs), as a genetic marker, contribute to the selection of appropriate chemotherapy regimens and dosages. Some SNPs are associated with folate metabolism, the therapeutic target of 5-FU. Methylenetetrahydrofolate reductase (MTHFR) rs1801131 and rs1801133, dihydrofolate reductase (DHFR) rs1650697 and rs442767, methionine synthase (MTR) rs1805087, gamma-glutamyl hydrolase (GGH) rs11545078 and solute carrier family 19 member 1 (SLC19A1) rs1051298 have been investigated in different kinds of cancers and antifolate antitumor drugs, which have potential forecasting and guiding significance for application of 5-FU. The ion torrent next-generation semiconductor sequencing technology can rapidly detect gastric cancer-related SNPs. Each time a base is extended in a DNA chain, an H+ will be released, causing local pH changes. The ionic sensor detects pH changes and converts chemical signals into digital signals, achieving sequencing by synthesis. This technique has low sample requirement, simple operation, low cost, and fast sequencing speed, which is beneficial for guiding individualized chemotherapy by SNPs.


Subject(s)
Polymorphism, Single Nucleotide , Stomach Neoplasms , Stomach Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Humans , Semiconductors , Sequence Analysis, DNA/methods
7.
Polymers (Basel) ; 16(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732754

ABSTRACT

In recent years in the field of traditional materials, traditional polyaniline has faced a number of scientific problems such as an irregular morphology, high difficulty in crystallization, and difficulty in forming an ordered structure compared to the corresponding inorganic materials. In response to these urgent issues, this study determines how to prepare a highly ordered structure in polyaniline formed at the gas-liquid interface. By dynamically arranging aniline monomers into a highly ordered structure with sodium dodecyl benzene sulfonate (SDBS) surfactant, aniline polymerization is initiated at the gas-liquid interface, resulting in two-dimensional polyaniline crystal sheets with a highly ordered structure. By elucidating the microstructure, crystallization process, and molecular structure of the two-dimensional polyaniline crystal sheets, the practical application of polyaniline as an encryption label in the field of electrochromism has been further expanded, thus making polyaniline widely used in the field of information encryption. Therefore, the synthesis of flaky polyaniline crystal sheets has a role in scientific research and practical application, which will arouse the interest and exploration of researchers.

8.
Nature ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778106

ABSTRACT

Two-dimensional (2D) semiconductors have shown great potential for monolithic three-dimensional (M3D) integration due to their dangling-bonds-free surface and the ability to integrate to various substrates without the conventional constraint of lattice matching1-10. However, with atomically thin body thickness, 2D semiconductors are not compatible with various high-energy processes in microelectronics11-13, where the M3D integration of multiple 2D circuit tiers is challenging. Here we report an alternative low-temperature M3D integration approach by van der Waals (vdW) lamination of entire prefabricated circuit tiers, where the processing temperature is controlled to 120 °C. By further repeating the vdW lamination process tier by tier, an M3D integrated system is achieved with 10 circuit tiers in the vertical direction, overcoming previous thermal budget limitations. Detailed electrical characterization demonstrates the bottom 2D transistor is not impacted after repetitively laminating vdW circuit tiers on top. Furthermore, by vertically connecting devices within different tiers through vdW inter-tier vias, various logic and heterogeneous structures are realized with desired system functions. Our demonstration provides a low-temperature route towards fabricating M3D circuits with increased numbers of tiers.

9.
Nanomaterials (Basel) ; 14(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786770

ABSTRACT

Carbon dots (CDs) possess a considerable number of beneficial features for latent applications in biotargeted drugs, electronic transistors, and encrypted information. The synthesis of fluorescent carbon dots has become a trend in contemporary research, especially in the field of controllable multicolor fluorescent carbon dots. In this study, an elementary one-step hydrothermal method was employed to synthesize the multicolor fluorescent carbon dots by co-doping unique phenylenediamine isomers (o-PD, m-PD, and p-PD) with B and P elements, which under 365 nm UV light exhibited signs of lavender-color, grass-color, and tangerine-color fluorescence, respectively. Further investigations reveal the distinctness in the polymerization, surface-specific functional groups, and graphite N content of the multicolor CDs, which may be the chief factor regarding the different optical behaviors of the multicolor CDs. This new work offers a route for the exploration of multicolor CDs using B/P co-doping and suggests great potential in the field of optical materials, important information encryption, and commercial anticounterfeiting labels.

10.
ACS Sens ; 9(5): 2653-2661, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38710540

ABSTRACT

Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO2 films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO2 films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm2 V-1 s-1. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO2. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO2 films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.


Subject(s)
Hydrogen , Tin Compounds , Tin Compounds/chemistry , Hydrogen/chemistry , Hydrogen/analysis , Surface Properties , Gases/analysis , Gases/chemistry , Nanostructures/chemistry , Semiconductors
11.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766200

ABSTRACT

Bacteriophages (phages), viruses that specifically target and kill bacteria, represent a promising strategy to combat multidrug-resistant (MDR) pathogens such as Pseudomonas aeruginosa (Pa). However, delivering sufficient concentrations of active phages directly to the infection site remains challenging, with current methods having variable success. Here we present "HydroPhage", an innovative hydrogel system for the sustained release of high-titer phages to effectively treat infections caused by MDR pathogens. Our injectable hydrogels, featuring dual-crosslinking of hyaluronic acid and PEG-based hydrogels through static covalent thioether bonds and dynamic covalent hemithioacetal crosslinks (DCC), encapsulate phages at concentration up to 1011 PFU/mL, and achieves controlled release of 109 PFU daily over a week, surpassing levels of current clinical dosages, with more than 60% total phage recovery. In a preclinical mouse model of extended wound infection, compared to intravenous treatment, we demonstrate enhanced bacterial clearance by localized, high-dose, and repeated phage dosing despite the emergence of bacterial resistance to phages. This work advances the development of clinically practical wound dressings tailored for resistant infections.

12.
Diabetes Metab Res Rev ; 40(4): e3812, 2024 May.
Article in English | MEDLINE | ID: mdl-38738481

ABSTRACT

AIMS: To evaluate the effectiveness of optical coherence tomography angiography (OCTA) in detecting early intraocular microvascular changes in diabetic patients. MATERIALS AND METHODS: A systematic study search was performed on PubMed, Medline, Embase, and the Cochrane Library, ranging from January 2012 to March 2023. Controlled studies compared diabetes mellitus (DM) patients with non-diabetic retinopathy (NDR) or patients with mild non-proliferative diabetic retinopathy (mild NPDR) to healthy people. These studies included parameters of OCTA such as foveal avascular zone (FAZ), vessel density of superficial capillary plexus (VDscp), vessel density of deep capillary plexus (VDdcp), and peripapillary VD. The relevant effect model was used according to the heterogeneity, and the mean difference and 95% confidence intervals were calculated. RESULTS: A total of 18 studies with 2101 eyes were eventually included in this meta-analysis. Our results demonstrated that early alterations of VDscp, VDdcp, and peripapillary VD in NDR patients had a significant difference compared with healthy people by OCTA (VDscp: WMD = -1.34, 95% CI: -1.99 to -0.68, P < 0.0001. VDdcp: WMD = -2.00, 95% CI: -2.95 to -1.04, P < 0.0001. Peripapillary VD: WMD = -1.07, 95% CI: -1.70 to -0.43, P = 0.0010). However, there was no statistically significant difference in total FAZ between them (WMD = -0.00, 95% CI: -0.02-0.01, P = 0.84). In addition, for patients with mild NPDR, OCTA could illustrate prominent changes in VDscp, VDdcp, and total FAZ compared with healthy people (VDscp: WMD = -6.11, 95% CI: -9.90 to -2.32, P = 0.002. VDdcp: WMD = -4.26, 95% CI: -5.95 to -2.57, P < 0.00001. FAZ: WMD = 0.06, 95% CI: 0.01-0.11, P = 0.03). CONCLUSIONS: In diabetic patients with or without retinopathy, the parameters of OCTA such as VDscp, VDdcp, and peripapillary vessel density were demonstrated as potential biomarkers in monitoring the early alterations of retinal microangiopathy, while total FAZ may have no significant changes in diabetic patients without retinopathy.


Subject(s)
Diabetic Retinopathy , Retinal Vessels , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Diabetic Retinopathy/diagnostic imaging , Diabetic Retinopathy/etiology , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Fluorescein Angiography/methods , Microvessels/diagnostic imaging , Microvessels/pathology , Diabetes Mellitus/diagnostic imaging , Prognosis
13.
Protein Expr Purif ; 221: 106518, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821452

ABSTRACT

Chiral amino acids and their deamination products, α-keto acids, have important applications in food, medicine, and fine chemicals. In this study, two l-amino acid deaminase genes from Proteus mirabilis, PM473 of type Ⅰ and PM471 of type Ⅱ were cloned and expressed in Escherichia coli respectively, expected to achieve the chiral separation of amino acids. Extensive substrate preference testing showed that both deaminases had catalytic effects on the d-amino acid component of the D, l-amino acids, and PM473 has a wider catalytic range for amino acids. When D, L-Cys was used as the substrate, all L-Cys components and 75.1 % of D-Cys were converted to mercapto pyruvate, and the remaining D-Cys was a single chiral enantiomer. Molecular docking analysis showed that the interaction between the substrate and the key residues affected the stereoselectivity of enzymes. The compatibility of hydrophobicity between the binding pocket and substrate may be the basic factor that affects the substrate selectivity. This work provides an alternative method for the production of α-keto acids and the resolution of chiral amino acids.

14.
Environ Res ; 255: 119157, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38762002

ABSTRACT

Land use types have a significant impact on river ecosystems. The Yiluo River is the largest tributary below Xiaolangdi Reservoir in the middle reaches of the Yellow River, and is one of the important water conservation areas in the Yellow River Basin. Studying the ecological status of the Yiluo River under varied land use types in this basin is crucial for both ecological protection and the high-quality development of the Yellow River Basin. This study investigated the impacts of land use types on the macroinvertebrate community and functional structure in the Yiluo River Basin and introduced the concept of the land use health index (LUI). During the survey period, a total of 11,894 macroinvertebrates were collected, and 143 species were identified, belonging to 4 phyla, 7 orders, 22 families, and 75 families. The results showed that LUI had the most significant impact on macroinvertebrate community structure, with substrate type, dry plant weight, total phosphorus, turbidity, and attached algae biomass also playing significant roles in affecting macroinvertebrate communities. The species richness, the Shannon-Wiener index, and the Margalef richness index exhibited a nonlinear positive correlation with LUI of the sampling site, increasing as LUI enhancing and eventually reaching a plateau. Functional richness showed a linear and positive correlation with LUI, increasing with its enhancement, while functional evenness and functional divergence exhibited a nonlinear correlation with LUI. Functional evenness initially increased and then decreased with the enhancement of LUI, while functional divergence decreased with LUI enhancement. This study can provide a scientific reference for river ecological management under various land use scenarios.The Yiluo River is the largest tributary below Xiaolangdi Reservoir in the middle reaches of the Yellow River, and is one of the important water conservation areas in the Yellow River Basin. Studying the ecological status of the Yiluo River under varied land use types in this basin is crucial for both ecological protection and the high-quality development of the Yellow River Basin. This study investigated the impacts of land use types on the macroinvertebrate community and functional structure in the Yiluo River Basin and introduced the concept of the land use health index (LUI). During the survey period, a total of 11,894 macroinvertebrates were collected, and 143 species were identified, belonging to 4 phyla, 7 orders, 22 families, and 75 families. The results showed that LUI had the most significant impact on macroinvertebrate community structure, with substrate type, dry plant weight, total phosphorus, turbidity, and attached algae biomass also playing significant roles in affecting macroinvertebrate communities. The species richness, the Shannon-Wiener index, and the Margalef richness index exhibited a nonlinear positive correlation with LUI of the sampling site, increasing as LUI enhancing and eventually reaching a plateau. Functional richness showed a linear and positive correlation with LUI, increasing with its enhancement, while functional evenness and functional divergence exhibited a nonlinear correlation with LUI. Functional evenness initially increased and then decreased with the enhancement of LUI, while functional divergence decreased with LUI enhancement. This study can provide a scientific reference for river ecological management under various land use scenarios.

15.
Cancer Manag Res ; 16: 491-505, 2024.
Article in English | MEDLINE | ID: mdl-38800665

ABSTRACT

Purpose: We aimed to develop a nomogram to predict prognosis of HR+ HER2- breast cancer patients and guide the application of postoperative adjuvant chemotherapy. Methods: We identified 310 eligible HR+ HER- breast cancer patients and randomly divided the database into a training group and a validation group. The endpoint was disease free survival (DFS). Concordance index (C-index), area under the curve (AUC) and calibration curves were used to evaluate predictive accuracy and discriminative ability of the nomogram. We also compared the predictive accuracy and discriminative ability of our nomogram with the eighth AJCC staging system using overall data. Results: According to the training group, platelet-to-lymphocyte ratio (PLR), tumor size, positive lymph nodes and Ki-67 index were used to construct the nomogram of DFS. The C-index of DFS was 0.708 (95% CI: 0.623-0.793) in the training group and 0.67 (95% CI: 0.544-0.796) in the validation group. The calibration curves revealed great consistencies in both groups. Conclusion: We have developed and validated a novel and practical nomogram that can provide individual prediction of DFS for patients with HR+ HER- breast cancer. This nomogram may help clinicians in risk consulting and guiding the application of postoperative adjuvant chemotherapy.

16.
J Org Chem ; 89(11): 7770-7779, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38738957

ABSTRACT

A visible-light-enabled photoredox radical cascade cyclization of 2-vinyl benzimidazole derivatives is developed. This chemistry is applicable to a wide range of N-aroyl 2-vinyl benzimidazoles as acceptors, and halo compounds, including alkyl halides, acyl chlorides and sulfonyl chlorides, as radical precursors. The Langlois reagent also serves as an effective partner in this photocatalytic oxidative cascade process. This protocol provides a robust alternative for rendering highly functionalized benzo[4,5]imidazo[1,2-b]isoquinolin-11(6H)-ones.

17.
Polymers (Basel) ; 16(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611230

ABSTRACT

The treatment of waste plastics has gradually become a hot topic in the current scientific community. In response to the needs for high-impact performance R-PP-based composites, carbon fiber (CF)-reinforced polyolefin elastomer (POE)/recycled polypropylene (R-PP) composite (CF/POE/R-PP) was prepared by the mechanical blending method, and its mechanical and thermal properties were systematically studied. It was found that the CF could effectively improve the bending and notch impact strength as well as enhance the thermal stability of POE/R-PP. Furthermore, a stable and dispersed composite interface formed by the combination of maleic anhydride-grafted polypropylene (PP-g-MAH) with the surface of CF and the fusion alkyl chains in R-PP and POE further enhanced the CF's reinforcing effect. As a result, the addition of 9 wt.% CF successfully improved the heat resistance of the composite material, and the residual carbon content increased by 97.84% after sintering. The composite toughening of POE and CF effectively improved the impact strength of the composite material, with a maximum increase of over 1000%. This study ultimately resulted in a high-impact-resistant composite material.

18.
Pediatr Surg Int ; 40(1): 113, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668784

ABSTRACT

PURPOSE: The incidence of post-transplant poral vein stenosis (PVS) is higher in pediatric liver transplantation, probably resulting from various portal vein (PV) reconstruction methods or other factors. METHODS: 332 patients less than 12 years old when receiving liver transplantation (LT) were enrolled in this research. Portal vein reconstruction methods include anastomosis to the left side of the recipient PV trunk (type 1, n = 170), to the recipient left and right PV branch patch (type 2, n = 79), using vein graft interposition (type 3, n = 32), or end-to-end PV anastomosis (type 4, n = 50). The incidence of PVS was analyzed in terms to different PV reconstruction methods and other possible risk factors. RESULTS: PVS occurred in 35 (10.5%) patients. Of the 32 patients using vein graft, 20 patients received a cryopreserved vein graft, 11 (55%) developed PVS, while the remaining 12 patients received a fresh iliac vein for PV interposition and none of them developed PVS. 9 patients whose liver donor was under 12 years old developed PVS, with an incidence of 18.8%. CONCLUSION: Cryopreserved vein graft interposition and a liver donor under 12 are independent risk factors for PVS in pediatric LT.


Subject(s)
Liver Transplantation , Portal Vein , Postoperative Complications , Humans , Liver Transplantation/methods , Portal Vein/surgery , Risk Factors , Male , Female , Child , Child, Preschool , Case-Control Studies , Infant , Constriction, Pathologic , Postoperative Complications/epidemiology , Incidence , Retrospective Studies , Anastomosis, Surgical/methods , Vascular Diseases/etiology , Vascular Diseases/surgery
19.
Cell Commun Signal ; 22(1): 224, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600588

ABSTRACT

BACKGROUND: Activation of VDR pathway was a promising anti-tumor therapy strategy. However, numerous clinical studies have demonstrated the effect of activating VDR is limited, which indicates that VDR plays a complex role in vivos. METHODS: We analyzed the TCGA database to examine the association between VDR expression and immune cell infiltration in pancreatic adenocarcinoma (PAAD). Western blot, ELISA, ChIP, and dual-luciferase reporter assays were performed to determine the mechanism of VDR regulating CCL20. Migration assay and immunofluorescence were used to investigate the role of CCL20 in M2 macrophage polarization and recruitment. We employed multiplexed immunohistochemical staining and mouse models to validate the correlation of VDR on macrophages infiltration in PAAD. Flow cytometry analysis of M2/M1 ratio in subcutaneous graft tumors. RESULTS: VDR is extensively expressed in PAAD, and patients with elevated VDR levels exhibited a significantly reduced overall survival. VDR expression in PAAD tissues was associated with increased M2 macrophages infiltration. PAAD cells overexpressing VDR promote macrophages polarization towards M2 phenotype and recruitment in vitro and vivo. Mechanistically, VDR binds to the CCL20 promoter and up-regulates its transcription. The effects of polarization and recruitment on macrophages can be rescued by blocking CCL20. Finally, the relationship between VDR and M2 macrophages infiltration was evaluated using clinical cohort and subcutaneous graft tumors. A positive correlation was demonstrated between VDR/CCL20/CD163 in PAAD tissues and mouse models. CONCLUSION: High expression of VDR in PAAD promotes M2 macrophage polarization and recruitment through the secretion of CCL20, which activates tumor progression. This finding suggests that the combination of anti-macrophage therapy may improve the efficacy of VDR activation therapy in PAAD.


Subject(s)
Adenocarcinoma , Chemokine CCL20 , Pancreatic Neoplasms , Receptors, Calcitriol , Animals , Humans , Mice , Adenocarcinoma/pathology , Cell Line, Tumor , Chemokine CCL20/metabolism , Macrophages/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phenotype , Receptors, Calcitriol/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages
20.
Plant Physiol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669310

ABSTRACT

The histone lysine (K) demethylase 4 (KDM4/JHDM3) subfamily of jumonji domain-containing demethylases (JMJs) has been implicated in various aspects of plant development. However, their involvement in regulating the ripening of fleshy fruits remains unclear. Here, we identified SlJMJ3, a member of the KDM4/JHDM3 family, as a H3K27me3 demethylase in tomato (Solanum lycopersicum) that plays an important role in fruit ripening regulation. Overexpression of SlJMJ3 led to accelerated fruit ripening, whereas loss-of-function of SlJMJ3 delayed this process. Furthermore, we determined that SlJMJ3 exerts its regulatory function by modulating the expression of multiple ripening-related genes involved in ethylene biosynthesis and response, carotenoid metabolism, cell wall modification, transcriptional control, and DNA methylation modification. SlJMJ3 bound directly to the promoters of ripening-related genes harboring the CTCTGYTY motif and activates their expression. Additionally, SlJMJ3 reduced the levels of H3K27me3 at its target genes, thereby up-regulating their expression. In summary, our findings highlight the role of SlJMJ3 in the regulation of fruit ripening in tomato. By removing the methyl group from trimethylated histone H3 lysine 27 at ripening-related genes, SlJMJ3 acts as an epigenetic regulator that orchestrates the complex molecular processes underlying fruit ripening.

SELECTION OF CITATIONS
SEARCH DETAIL
...