Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(3): e2307920, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37823840

ABSTRACT

Simultaneously achieving high efficiency and robust device stability remains a significant challenge for organic solar cells (OSCs). Solving this challenge is highly dependent on the film morphology of the bulk heterojunction (BHJ) photoactive blends; however, there is a lack of rational control strategy. Herein, it is shown that the molecular crystallinity and nanomorphology of nonfullerene-based BHJ can be effectively controlled by a squaraine-based doping strategy, leading to an increase in device efficiency from 17.26% to 18.5% when doping 2 wt% squaraine into the PBDB-TF:BTP-eC9:PC71 BM ternary BHJ. The efficiency is further improved to 19.11% (certified 19.06%) using an indium-tin-oxide-free column-patterned microcavity (CPM) architecture. Combined with interfacial modification, CPM quaternary OSC excitingly shows an extrapolated lifetime of ≈23 years based on accelerated aging test, with the mechanism behind enhanced stability well studied. Furthermore, a flexible OSC module with a high and stable efficiency of 15.2% and an overall area of 5 cm2 is successfully fabricated, exhibiting a high average output power for wearable electronics. This work demonstrates that OSCs with new design of BHJ and device architecture are highly promising to be practical relevance with excellent performance and stability.

3.
Small ; : e2309827, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38084461

ABSTRACT

Solution-processed photodetectors have emerged as promising candidates for next-generation of visible-near infrared (vis-NIR) photodetectors. This is attributed to their ease of processing, compatibility with flexible substrates, and the ability to tune their detection properties by integrating complementary photoresponsive semiconductors. However, the limited performance continues to hinder their further development, primarily influenced by the difference of charge transport properties between perovskite and organic semiconductors. In this work, a perovskite-organic bipolar photodetectors (PDs) is introduced with multispectral responsivity, achieved by effectively managing charges in perovskite and a ternary organic heterojunction. The ternary heterojunction, incorporating a designed NIR guest acceptor, exhibits a faster charge transfer rate and longer carrier diffusion length than the binary heterojunction. By achieving a more balanced carrier dynamic between the perovskite and organic components, the PD achieves a low dark current of 3.74 nA cm-2 at -0.2 V, a fast response speed of <10 µs, and a detectivity of exceeding 1012 Jones. Furthermore, a bioinspired retinotopic system for spontaneous chromatic adaptation is achieved without any optical filter. This charge management strategy opens up possibilities for surpassing the limitations of photodetection and enables the realization of high-purity, compact image sensors with exceptional spatial resolution and accurate color reproduction.

4.
Science ; 382(6668): 284-289, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37856581

ABSTRACT

P-i-n geometry perovskite solar cells (PSCs) offer simplified fabrication, greater amenability to charge extraction layers, and low-temperature processing over n-i-p counterparts. Self-assembled monolayers (SAMs) can enhance the performance of p-i-n PSCs but ultrathin SAMs can be thermally unstable. We report a thermally robust hole-selective layer comprised of nickel oxide (NiOx) nanoparticle film with a surface-anchored (4-(3,11-dimethoxy-7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid (MeO-4PADBC) SAM that can improve and stabilize the NiOx/perovskite interface. The energetic alignment and favorable contact and binding between NiOx/MeO-4PADBC and perovskite reduced the voltage deficit of PSCs with various perovskite compositions and led to strong interface toughening effects under thermal stress. The resulting 1.53-electron-volt devices achieved 25.6% certified power conversion efficiency and maintained >90% of their initial efficiency after continuously operating at 65 degrees Celsius for 1200 hours under 1-sun illumination.

5.
Angew Chem Int Ed Engl ; 62(50): e202315911, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37905301

ABSTRACT

Accidentally, it was found that triphenylamine (TPA) from commercial sources shows ultralong yellow-green room temperature phosphorescence (RTP) like commercial carbazole, which however disappears for lab-synthesized TPA with high purity. Herein, we for the first time identify the impurity types that cause RTP of commercial TPA, which are two N, N-diphenyl-naphthylamine isomers. Due to similar molecular polarity and very trace amount (≈0.8 ‰, molar ratio), these naphthyl substituted impurities can be easily overlooked. We further show that even at an extremely low amount (1000000 : 1, mass ratio) of impurities, RTP emission is still generated, attributed to the triplet-to-triplet energy transfer mechanism. Notably, this doping strategy is also applicable to the triphenylphosphine and benzophenone host systems, of which strong RTP emission can be activated by simply doping the corresponding naphthyl substituted analogues into them. This work therefore provides a general and efficient host/guest strategy toward high performance and diverse organic RTP materials.

6.
Angew Chem Int Ed Engl ; 62(11): e202218752, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36648451

ABSTRACT

The commercialization of perovskite solar cells (PVSCs) urgently requires the development of green-solvent processable dopant-free hole transporting materials (HTMs). However, strong intermolecular interactions that ensure high hole mobility always compromise the solubility and film-forming ability in green solvents. Herein, we show a simple but effective design strategy to solve this trade-off, that is, constructing star-shaped D-A-D structure. The resulting HTMs (BTP1-2) can be processed by green solvent of 2-methylanisole (2MA), a kind of food additive, and show high hole mobility and multiple defect passivation effects. An impressive efficiency of 24.34 % has been achieved for 2MA-processed BTP1 based inverted PVSCs, the highest value for green-solvent processable HTMs so far. Moreover, it is manifested that the charge separation of D-A type HTMs at the photoinduced excited state can help to passivate the defects of perovskites, indicating a new HTM design insight.

7.
Adv Mater ; 35(12): e2208431, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36585902

ABSTRACT

The interface and crystallinity of perovskite films play a decisive role in determining the device performance, which is significantly influenced by the bottom hole-transporting material (HTM) of inverted perovskite solar cells (PVSCs). Herein, a simple design strategy of polymer HTMs is reported, which can modulate the wettability and promote the anchoring by introducing pyridine units into the polyarylamine backbone, so as to realize efficient and stable inverted PVSCs. The HTM properties can be effectively modified by varying the linkage sites of pyridine units, and 3,5-linked PTAA-P1 particularly demonstrates a more regulated molecular configuration for interacting with perovskites, leading to highly crystalline perovskite films with uniform back contact and reduced defect density. Dopant-free PTAA-P1-based inverted PVSCs have realized remarkable efficiencies of 24.89% (certified value: 24.50%) for small-area (0.08 cm2 ) as well as 23.12% for large-area (1 cm2 ) devices. Moreover, the unencapsulated device maintains over 93% of its initial efficiency after 800 h of maximum power point tracking under simulated AM 1.5G illumination.

8.
Water Res ; 227: 119341, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36399844

ABSTRACT

Solar-driven photocatalysis offers an environmentally friendly and sustainable approach for the degradation of organic pollutants in water without chemical additives, but the low specific surface area and adsorption capacity of common photocatalysts restricts the surface reactions with the contaminants. Herein, we hypercrosslinked polymer layers on TiO2-graphene surface to enlarge the specific surface area from 136 to 988 m2/g, leading to a high adsorption capacity of sulfadiazine as 54.3 mg/g, which is 15.5 times that of TiO2-graphene (3.5 mg/g). The adsorption kinetics reveals the combination of physical and chemical adsorption by porous benzene-based polymer for sulfadiazine enrichment. Besides, the polymer layers with broad light absorption enable the composite to function efficiently as visible-light-driven photocatalysts. Thus, the as-designed composite exhibits excellent performance for sulfadiazine removal by integrating the adsorptive and photocatalytic processes, especially for the diluted sulfadiazine solution. More importantly, the porous polymer layer can function as a filter for weakening the interference of TiO2 surface with the natural matters from complex water matrices. Based on the identification of dominant reactive species, the possible attacking pathway and the sulfadiazine subsequent degradation are presented. Further, the enhanced adsorption and photodegradation efficiency can also be achieved for the removal of other typical pollutants such as 4-chlorophenol and methylene blue. This study highlights an adsorption-enhanced-degradation mechanism for water pollutants that can direct the design of high-performance photocatalysts under visible light.


Subject(s)
Graphite , Water Pollutants , Adsorption , Porosity , Polymers , Catalysis , Sulfadiazine , Water
9.
Small ; 18(48): e2204759, 2022 12.
Article in English | MEDLINE | ID: mdl-36285744

ABSTRACT

In order to artificially regulate cell behaviors, intracellular polymerization as an emerging chemical technique has attracted much attention. Yet, it is still a challenge to achieve effective intracellular polymerization to conquer tumors in the complex cellular environment. Herein, this work develops a tumor-targeting and caspase-3 responsive nanoparticle composed of a diacetylene-containing lipidated peptide amphiphile and mitochondria-targeting photosensitizer (C3), which undergoes nanoparticle-to-nanofiber transformation and efficient in situ polymerization triggered by photodynamic treatment and activation of caspase-3. The locational nanofibers on the mitochondria membranes lead to mitochondrial reactive oxygen species (mtROS) burst and self-amplified circulation, offering persistent high oxidative stress to induce cell apoptosis. This study provides a strategy for greatly enhanced antitumor therapeutic efficacy through mtROS burst and self-amplified circulation induced by intracellular transformation and in situ polymerization.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Caspase 3 , Polymerization , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism , Peptides
11.
Chemistry ; 28(57): e202201675, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-35792802

ABSTRACT

Non-fullerene acceptors with fused-ring structures have rapidly improved the performance of organic solar cells over the past five years, but they still suffer from synthetic complexity and thus high material costs, one of the major obstacles of hindering their commercialization process. The construction of non-fused ring acceptors (NFRAs) has recently been regarded as a feasible solution due to their facile synthesis and satisfactory device performances. Thus in this concept, we highlight the important progress of NFRAs in recent years, and discuss the key relationship between molecular design strategies and device performance. Finally, we provide some potential molecular insights for the future design of high-performance NFRAs.

12.
Chem Sci ; 13(17): 4714-4739, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35655884

ABSTRACT

Long-term stability is critical for organic solar cells (OSCs) for practical applications. Several factors affect the stability of OSCs, including materials stability, morphology stability of bulk-heterojunctions and interface stability. In this perspective, we focus on interface stability due to interfacial reactions between the emerging acceptor-donor-acceptor (A-D-A) type nonfullerene active layers and interfacial layers. The description covers the initial phenomena of interfacial instability, mechanism of interfacial reactions, and strategies adopted to suppress interfacial reactions between the nonfullerene active layers and interfacial layers. Methods to test and analyze the chemical instability of nonfullerene acceptors are also included. The C[double bond, length as m-dash]C vinyl linker between the donor moiety and acceptor moiety is chemically or photochemically reactive and is a weak point for interface stability. The interface stability of OSCs could be enhanced by reducing the reactivity of the C[double bond, length as m-dash]C vinyl linker or removing it directly, modifying the surface of interfacial layers, and developing other novel interfacial materials.

13.
Macromol Rapid Commun ; 43(22): e2200276, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35567333

ABSTRACT

The development of wide-bandgap polymer donors having complementary absorption and compatible energy levels with near-infrared (NIR) absorbing nonfullerene acceptors is highly important for realizing high-performance organic solar cells (OSCs). Herein, a new thiophene-fused diazabenzo[k]fluoranthene derivative is successfully synthesized as the electron-deficient unit to construct an efficient donor-acceptor (D-A) type alternating copolymer donor, namely, PABF-Cl, using the chlorinated benzo[1,2-b:4,5-b']dithiophene as the copolymerization unit. PABF-Cl exhibits a wide optical bandgap of 1.93 eV, a deep highest occupied molecular level of -5.36 eV, and efficient hole transport. As a result, OSCs with the best power conversion efficiency of 11.8% are successfully obtained by using PABF-Cl as the donor to blend with a NIR absorbing BTP-eC9 acceptor. This work provides a new design of electron-deficient unit for constructing high-performance D-A type polymer donors.

14.
Macromol Rapid Commun ; 43(18): e2200179, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35439843

ABSTRACT

Dendronized hyperbranched polymers (DHPs) can provide advantages for both hyperbranched polymers and dendrimers, making them a promising structure platform for high-performance second-order nonlinear optical (NLO) materials. Herein, a new A3 +B2 -type DHP (HP2) is reported through facile and efficient [2+2] cycloaddition polymer postfunctionalization, in which tetracyanobutadienyl-based moieties are introduced as the main chromophores while isophorone-bridged moieties serve as the isolation chromophores. Benefiting from this unique hyperbranched structure design, the measured second-harmonic generation coefficient of HP2 can reach up to 96.6 pm V-1 with high thermal stability, making it a good material candidate for second-order NLO applications.

15.
Angew Chem Int Ed Engl ; 61(24): e202203093, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35343044

ABSTRACT

Cyanines have been widely used as the photosensitizers (PSs) in the biomedical field, but controlling their molecular aggregates in nanoparticles (NPs) remains a major challenge. Moreover, the impact of aggregate behaviors of cyanines on the photosensitization is still unclear. Herein, the first anionic cyanine PSs based on a tricyanofuran end group have been designed by achieving supramolecular J-type aggregates in NPs via counterion engineering. Our results indicate that J-type aggregates in NPs can not only bring significantly red-shifted emission, negatively charged surface, and high photostability, but also enable a significant 5-fold increase in singlet oxygen generation efficiency compared to that in the nonaggregate state, providing strong experimental evidence for the superiority of J-aggregates in enhancing photosensitization. Thus, combined with the mitochondria-targeting ability, the J-type aggregate NPs show remarkable in vivo antitumor phototheranostic efficacy, making them have a potential for clinical use.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Quinolines , Coloring Agents , Humans , Mitochondria , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy
16.
Chemistry ; 28(29): e202200725, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35294078

ABSTRACT

Two challenges remain for organic thermoresponsive materials; one is to develop high-performance red-emissive thermoresponsive materials, while another is to simultaneously achieve high contrast ratio (CR), fast and reversible thermoresponse in a single element. Herein, we not only develop a new deep-red emissive squaraine-based AIEgen (TPE-SQ12) based on a pyrylium end group, which is suitable for fabricating high-performance thermoresponsive materials, but also show an effective approach to improve both CR (∼ten times increase) and response time (less than 3 seconds), that is, molecularly dispersing AIEgen into an elastomer, attributed to the significantly expanded free volume of elastomer upon increasing the temperature that can activate the AIEgen intramolecular movements more pronouncedly. Double encryption and temperature mapping systems have been separately established by using our designed elastomer/TPE-SQ12 film, showing the great potential for anti-counterfeiting and temperature sensing. Finally, white emission is further achieved by co-doping TPE-SQ12 with cyan dye into elastomer, which enables fluorescent thermochromism for improving the temperature mapping ability.

17.
Chem Sci ; 13(4): 996-1002, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35211264

ABSTRACT

For organic semiconductors, the development of electron-deficient building blocks has lagged far behind that of the electron-rich ones. Moreover, it remains a significant challenge to design organic molecules with efficient charge transport and strong solid-state emission simultaneously. Herein, we describe a facile synthetic route toward a new π-acceptor imide building block, namely 2,3-fluoranthene imide, based on which four regioregular small molecules (F1-F4) are synthesized by tuning the imide orientations and the central linkage bridges. All molecules exhibit attractive aggregation-induced emission (AIE) characteristics with strong far-red emission in the powder state, and F3 shows the highest photoluminescence quantum yield of 5.9%. F1 and F3 with a thiophene bridge present an obvious p-type characteristic, while for F3 with an outward imide orientation, the maximum hole mobility from a solution-processed field-effect transistor (FET) device reaches 0.026 cm2 V-1 s-1, being ∼104 times higher than the value of F1 with an inward imide orientation. By using a fluorinated thiophene bridge, the resulting F2 and F4 can be turned into n-type semiconductors, showing an electron mobility of ∼1.43 × 10-4 and ∼3.34 × 10-5 cm2 V-1 s-1, respectively. Our work not only demonstrates that asymmetric 2,3-fluoranthene imide is a promising building block for constructing organic materials with high carrier mobility and strong solid-state emission, but also highlights the importance of regioregular structures in the materials' properties.

18.
Adv Sci (Weinh) ; 9(10): e2105903, 2022 04.
Article in English | MEDLINE | ID: mdl-35112805

ABSTRACT

Orthogonal integration of thermosensitive images is of vital significance for advanced anticounterfeiting, which however remains formidably challenging due to the trade-off that facile thermoresponse needs easy molecular motion while robust imaging requires molecular restriction. Herein, a viable approach is demonstrated to tackle the challenge by in situ fixing a predesigned aggregation induced emission luminogen (AIEgen) at the polymer/liquid crystal (LC) interface via precisely controlled interfacial engineering, in which the AIEgen is enriched in LC phases during polymerization induced phase separation and subsequently driven to the interface by the interfacial thiol-ene click reaction. Crosstalk-free integration of holographic and fluorescent dual-thermosensitive images with high sensitivity, high contrast ratio, and robust performance is successfully realized in a single unit, attributed to the simultaneously LC-facilitated AIEgen molecular motion and polymer-restricted AIEgen diffusion at the interface. The exciting characteristics of these orthogonally integrated dual images will enable them to prevent illegal replication and thus are expected to be promising for high-security-level anticounterfeiting applications.


Subject(s)
Coloring Agents , Sulfhydryl Compounds , Coloring Agents/chemistry , Polymerization , Polymers/chemistry , Sulfhydryl Compounds/chemistry
19.
Front Optoelectron ; 15(1): 46, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36637605

ABSTRACT

Inverted perovskite solar cells (PVSCs) have recently made exciting progress, showing high power conversion efficiencies (PCEs) of 25% in single-junction devices and 30.5% in silicon/perovskite tandem devices. The hole transporting material (HTM) in an inverted PVSC plays an important role in determining the device performance, since it not only extracts/transports holes but also affects the growth and crystallization of perovskite film. Currently, polymer and self-assembled monolayer (SAM) have been considered as two types of most promising HTM candidates for inverted PVSCs owing to their high PCEs, high stability and adaptability to large area devices. In this review, recent encouraging progress of high-performance polymer and SAM-based HTMs is systematically reviewed and summarized, including molecular design strategies and the correlation between molecular structure and device performance. We hope this review can inspire further innovative development of HTMs for wide applications in highly efficient and stable inverted PVSCs and the tandem devices.

20.
Chemistry ; 27(72): 18103-18108, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34751986

ABSTRACT

Merocyanine (MC) dyes exhibit facile synthesis and attractive optical properties, making them widely studied as the donor materials in organic solar cells (OSCs). In this study, for the first time, simple indole-based MCs are successfully designed as unfused nonfullerene acceptors (NFAs) for OSCs by forming dimers with A-D-π-D-A structure, which possess enhanced photostability compared to the well-known ITIC acceptor and high electron mobility in blend films. When blended with P3HT donor, one of the dimers, i. e. Z2, shows a good cell efficiency of 3.53 %, which outperforms the performance of most of P3HT/NFA blends, particularly for unfused systems, and thus indicates good potential of simple MCs as NFAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...