Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2402170, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885373

ABSTRACT

Oxazocines are key structural intermediates in the synthesis of natural products and pharmaceutical molecules. However, the synthesis of oxazocines especially in a highly enantioselective manner, is a long-standing formidable challenge due to unfavorable energetics involved in cyclization. Herein, a series of new PNP-Ligand P-chiral stereocenter is first designed and synthesized, called MQ-Phos, and successfully applied it in the Pd-catalyzed enantioselective higher-order formal [4+4]-cycloaddition of α, ß-unsaturated imines with 2-(hydroxymethyl)-1-arylallyl carbonates. The reaction features mild conditions, excellent regio- and enantiocontrol and a broad substrate scope (54 examples). Various medium-sized rings can be afforded in moderate to excellent yields (up to 92%) and excellent enantioselectivity (up to 99% ee). The newly developed MQ-Phos is critical for synthesis of the medium-sized ring in excellent catalytic reactivity and enantioselectivity.

2.
World J Stem Cells ; 16(5): 538-550, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817334

ABSTRACT

BACKGROUND: Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of ANKRD26. However, the positive regulators of ANKRD26 are still unknown. AIM: To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on ANKRD26 transcription. METHODS: Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differentiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases (Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between ANKRD26 expression and overall survival in cancer patients. RESULTS: In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5'-UTR of ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a more favorable prognosis in breast and lung cancer patients. CONCLUSION: We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many tissue-derived cancers.

3.
Gene ; 862: 147260, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36775217

ABSTRACT

Discus Symphysodon spp. employs an unusual parental care behavior where fry feed on parental skin mucus after hatching. Studies on discus immunoglobulin superfamily (IgSF) especially during parental care are scarce. Here, a total of 518 IgSF members were identified based on discus genome and clustered into 12 groups, unevenly distributing on 30 linkage groups. A total of 92 pairs of tandem duplication and 40 pairs of segmental duplication that underwent purifying selection were identified. IgSF genes expressed differentially in discus skin during different care stages and between male and female parents. Specifically, the transcription of btn1a1, similar with mammalian lactation, increased after spawning, reached a peak when fry started biting on parents' skin mucus, and then decreased. The expression of btn2a1 and other immune members, e.g., nect4, fcl5 and cd22, were up-regulated when fry stopped biting on mucus. These results suggest the expression differentiation of IgSF genes in skin of discus fish during parental care.


Subject(s)
Cichlids , Skin , Animals , Female , Male , Skin/metabolism , Cichlids/genetics , Vertebrates , Immunoglobulins/metabolism , Lactation , Mammals
4.
Chemosphere ; 309(Pt 1): 136646, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36183890

ABSTRACT

The plastisphere refers to biofilm formation on the microplastic (MP) surface, but its subsequent functions, especially driving the nitrogen biogeochemical cycle, are rarely studied. Here, MPs were incubated in the pelagic water and benthic water-sediment interface of an aquaculture pond, and the two corresponding microcosms amended with incubated plastisphere were simulated. The results showed decreased ammonia concentrations and increased nitrification rates in microcosms with either pelagic or benthic plastispheres. To uncover the possible mechanisms, the community structure and function of the plastisphere were investigated. As clarified by 16S rRNA, the community diversity of the pelagic plastisphere was significantly higher than that of the corresponding hydrosphere. Plastisphere communities, especially those incubated in pelagic water, were separated from the hydrosphere. Moreover, the abundance of Proteobacteria increased while the abundance of Cyanobacteria decreased in both plastispheres. Metagenome further revealed that the abundance of amoA and annotated Nitrososphaeraceae_archaeon and hao and affiliated Nitrosomonas_europaea, which contributed to ammonia oxidation to nitrite, was higher in the benthic plastisphere. Comparing the pelagic plastisphere with the corresponding hydrosphere, however, the abundance of nxrA and annotated Nitrobacter hamburgensis and nxrB and the affiliated Nitrospira moscoviensis, which are involved in nitrite oxidation, was more abundant in the plastisphere. These findings suggest that the plastisphere might selectively enrich functional microorganisms and genes in a habitat-dependent manner to promote nitrification in aquaculture ponds.


Subject(s)
Nitrification , Plastics , RNA, Ribosomal, 16S/genetics , Ammonia , Microplastics , Nitrites , Ponds , Phylogeny , Aquaculture , Nitrogen , Water , Oxidation-Reduction
5.
Front Neurol ; 13: 879882, 2022.
Article in English | MEDLINE | ID: mdl-35669880

ABSTRACT

Background and Purpose: Neutrophil-lymphocyte ratio (NLR) predicts clinical outcomes in patients with stroke. Aneurysm wall enhancement (AWE) on high-resolution vessel wall magnetic resonance imaging (HR-VWI) is an inflammation marker for intracranial aneurysm (IA). This study aims to evaluate the association of NLR as a peripheral blood inflammatory marker with circumferential AWE in patients with IA. Methods: We analyzed data of consecutive patients harboring IAs between September 2017 and December 2021 at our institution. The peripheral blood inflammatory indicators were compared between patients with ruptured and unruptured IAs. The presence of circumferential AWE in unruptured IA was identified and quantitatively measured using the aneurysm-to-pituitary stalk contrast ratio (CRstalk) on HR-VWI. We used the optimal cutoff value of 0.5 for CRstalk to differentiate circumferential AWE in unruptured IAs. We assessed the relationship of clinical, laboratory, and radiological characteristics with circumferential AWE and CRstalk ≥0.5 in unruptured IAs. Results: The study group was composed of one hundred and twenty-five patients with 142 IAs. NLR level at admission was significantly higher in patients with ruptured IAs than those with unruptured IAs (7.55 vs. 1.81; P < 0.001). AWE on HR-VWI was present in 30 patients with unruptured IAs (38.5%), including 12 with focal AWE and 18 with circumferential AWE. NLR (odds ratio (OR), 2.168; 95% CI, 1.149-4.088) and size (odds ratio, 1.370; 95% CI, 1.126-1.667) were independently associated with circumferential AWE in unruptured IA. NLR was also independently associated with circumferential AWE in small unruptured IA (<7 mm). Furthermore, NLR level at admission was associated with CRstalk ≥.5 in patients with unruptured IA. The optimal cutoff value of NLR for circumferential AWE was 1.86. Conclusion: NLR is a valuable peripheral blood inflammatory marker is more often in the rupture status of IA and was associated with circumferential AWE on HR-VWI in unruptured IA.

6.
Brain Behav ; 12(5): e2568, 2022 05.
Article in English | MEDLINE | ID: mdl-35531771

ABSTRACT

BACKGROUND: Aneurysm wall enhancement on high-resolution vessel wall imaging (HR-VWI) may represent vessel wall inflammation for unruptured intracranial aneurysms (UIAs). Further evidence for the role of circumferential aneurysm wall enhancement (CAWE) in evaluating the instability of UIAs is required, especially in small aneurysms (<7 mm). METHODS: We analyzed patients with saccular UIAs who prospectively underwent HR-VWI on a 3.0 T MRI scanner in our center from September 2017 to August 2021. The presence of AWE was identified and quantitatively measured using the aneurysm-to-pituitary stalk contrast ratio (CRstalk) with maximal signal intensity value. The PHASES and ELAPSS scores were used to assess the risk of aneurysm rupture and growth. We evaluated the association of CAWE and CRstalk value with intracranial aneurysm instability. RESULTS: One hundred patients with 109 saccular UIAs were included in this study. Eighty-three UIAs (76.1%) had a size smaller than 7 mm. PHASES and ELAPSS scores were significantly higher in UIAs with CAWE than in UIAs without CAWE (p < .01). The association of CAWE with PHASES and ELAPSS scores remained in small UIAs (<7 mm). The optimal cutoff value of CRstalk for CAWE was 0.5. PHASES and ELAPSS scores were significantly higher in UIAs with CRstalk ≥0.5 than in UIAs with CRstalk <0.5 (p < .01). CONCLUSIONS: CAWE on HR-VWI is a valuable imaging marker for aneurysm instability in UIAs. CRstalk value ≥0.5 may be associated with a higher risk of intracranial aneurysm rupture and growth.


Subject(s)
Aneurysm, Ruptured , Intracranial Aneurysm , Aneurysm, Ruptured/diagnostic imaging , Humans , Inflammation , Intracranial Aneurysm/diagnostic imaging , Magnetic Resonance Imaging/methods
7.
J Hazard Mater ; 432: 128623, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35290895

ABSTRACT

Metal oxide semiconductors (MOS) have been extensively studied for gas sensing due to their excellent chemical stability and adjustable electronic properties. However, there is still a lack of ingenious design strategies to achieve customizable gas detection in complex environments. Herein, a novel and scalable strategy of constructing organic-inorganic "chelate" adsorption sites is proposed to promote the affinity of MOS sensing materials to target molecules. Specifically, 3-aminopropyltriethoxysilane (APTES)-functionalized reduced graphene oxide (rGO) was decorated on In2O3 tubes (AG/Inx), and its NO2 sensing performance was studied. As a result, the optimal AG/Inx shows boosted room-temperature NO2 response, and its response to 1 ppm NO2 is 4.8 times that of In2O3. More attractively, the optimal AG/Inx exhibits good selectivity, as well as outstanding detection ability (Rg/Ra = 1.6) for low concentration NO2 (20 ppb). Experimental results suggest that APTES-rGO not only acts as the electron acceptor to accelerate charge transfer, but also enhances NO2 adsorption. Further theoretical calculations reveal that NO2 is simultaneously adsorbed at rGO and APTES via a flexible "chelate" mechanism. The multidentate adsorption configuration remarkably strengthens the NO2-host interaction, which is conducive to improving sensing performance. This work may inspire the material design of a new generation high-performance gas sensors.

8.
ACS Appl Mater Interfaces ; 14(1): 564-573, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34962768

ABSTRACT

Detection of formaldehyde (FA) in the atmosphere is of significant importance because exposure to FA may cause serious health problems such as sick-house syndrome, leukemia, and cancer. Modifying metal oxide semiconductors (MOSs) with noble metal nanoparticles (NPs) is an efficient method to enhance FA-sensing properties. Herein, a series of Au25 nanocluster (NC)-decorated three-dimensionally ordered macroporous In2O3 materials (Au25/3DOM In2O3) is created, and the loading amount of Au25 NCs was optimized based on FA responses. To reveal the effect of gold size on FA responses, we constructed Au144 NC-loaded 3DOM In2O3 and Au NP (2.9 nm)-modified 3DOM In2O3 and compared their gas-sensing properties with the optimal Au25/3DOM In2O3. The results show that in comparison with its counterparts, the optimal Au25/3DOM In2O3 presents higher sensitivity, shorter response/recovery times, better selectivity, and excellent reproducibility. More attractively, the responses to FA are dependent on the size of Au particles loaded on In2O3. We suggest that the enhanced FA responses for the optimal material are mainly attributed to the electronic and chemical-sensitization effects of Au25 NCs, and the size-dependent effect of FA responses is ascribed to the size of Au NPs affecting the formation of oxygen-adsorbing species. This work provides an efficient way for fabricating noble metal NP-loaded MOSs with tunable gas-sensing properties.

9.
Cells ; 10(4)2021 04 14.
Article in English | MEDLINE | ID: mdl-33919979

ABSTRACT

Macrophages are widely distributed in tissues and function in homeostasis. During cancer development, tumor-associated macrophages (TAMs) dominatingly support disease progression and resistance to therapy by promoting tumor proliferation, angiogenesis, metastasis, and immunosuppression, thereby making TAMs a target for tumor immunotherapy. Here, we started with evidence that TAMs are highly plastic and heterogeneous in phenotype and function in response to microenvironmental cues. We pointed out that efforts to tear off the heterogeneous "camouflage" in TAMs conduce to target de facto protumoral TAMs efficiently. In particular, several fate-mapping models suggest that most tissue-resident macrophages (TRMs) are generated from embryonic progenitors, and new paradigms uncover the ontogeny of TAMs. First, TAMs from embryonic modeling of TRMs and circulating monocytes have distinct transcriptional profiling and function, suggesting that the ontogeny of TAMs is responsible for the functional heterogeneity of TAMs, in addition to microenvironmental cues. Second, metabolic remodeling helps determine the mechanism of phenotypic and functional characteristics in TAMs, including metabolic bias from macrophages' ontogeny in macrophages' functional plasticity under physiological and pathological conditions. Both models aim at dissecting the ontogeny-related metabolic regulation in the phenotypic and functional heterogeneity in TAMs. We argue that gleaning from the single-cell transcriptomics on subclonal TAMs' origins may help understand the classification of TAMs' population in subclonal evolution and their distinct roles in tumor development. We envision that TAM-subclone-specific metabolic reprogramming may round-up with future cancer therapies.


Subject(s)
Embryo, Mammalian/pathology , Neoplasms/pathology , Neoplasms/prevention & control , Tumor-Associated Macrophages/pathology , Glucose/metabolism , Humans , Lipid Metabolism , Neoplasms/metabolism , Single-Cell Analysis
10.
ACS Appl Mater Interfaces ; 12(48): 53921-53931, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33202136

ABSTRACT

Platinum telluride (PtTe2) has garnered significant research enthusiasm owing to its unique characteristics. However, large-scale synthesis of PtTe2 toward potential photoelectric and photovoltaic application has not been explored yet. Herein, we report direct tellurization of Pt nanofilms to synthesize large-area PtTe2 films and the influence of growth conditions on the morphology of PtTe2. Electrical analysis reveals that the as-grown PtTe2 films exhibit typical semimetallic behavior, which is in agreement with the results of first-principles density functional theory (DFT) simulation. Moreover, the combination of multilayered PtTe2 and Si results in the formation of a PtTe2/Si heterojunction, exhibiting an obvious rectifying effect. Moreover, the PtTe2-based photodetector displays a broadband photoresponse to incident radiation in the range of 200-1650 nm, with the maximum photoresponse at a wavelength of ∼980 nm. The R and D* of the PtTe2-based photodetector are found to be 0.406 A W-1 and 3.62 × 1012 Jones, respectively. In addition, the external quantum efficiency is as high as 32.1%. On the other hand, the response time of τrise and τfall is estimated to be 7.51 and 36.7 µs, respectively. Finally, an image sensor composed of a 8 × 8 PtTe2-based photodetector array was fabricated, which can record five near-infrared (NIR) images under 980 nm with a satisfying resolution. The result demonstrates that the as-prepared PtTe2 material will be useful for application in NIR optoelectronics.

11.
ACS Appl Mater Interfaces ; 12(49): 54507-54516, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33233882

ABSTRACT

Solar-driven photocatalytic CO2 reduction into CH4 with H2O is considered to be a promising way to alleviate the energy crisis and greenhouse effect. However, current CO2 photoreduction technologies tend to overlook the role of photooxidation half reaction as well as the effect of the protons produced by water oxidation on CH4 generation, resulting in low CO2 conversion efficiency and poor CH4 selectivity. In the present study, a series of chloride-modified Bi2WO6 nanosheets were constructed in view of chloride-assisted photocatalytic water oxidation. The results show that the CH4 yield of the synthesized sample can be enhanced up to about 10 times compared to that with no Cl- modification. Besides, the selectivity of CH4 can be regulated by the loading amount of chloride, varying from 51.29% for Bi2WO6 to 94.98% for the maximum. The increase of product yield is attributed to chloride modification, which not only changed the morphology of the catalyst, but also modified the pathway of water oxidation. Further studies on intermediate products and the density functional theory calculation confirm that the Cl- ions on Bi2WO6 nanosheets not only promote H2O oxidation, but also lower the energy barrier for intermediate *CHO generation, thus facilitating CH4 production. The results gained herein may provide some illuminating insights into the design of a highly selective photocatalyst for efficient CO2 reduction.

12.
ACS Appl Mater Interfaces ; 12(30): 34245-34253, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32633129

ABSTRACT

Nitrogen dioxide (NO2) detection is of great importance because the emission of NO2 gas profoundly endangers the natural environment and human health. However, a few challenges, including lowering detection limit, improving response/recovery kinetics, and reducing working temperature, should be further addressed before practical applications. Herein, a series of N-doped graphene quantum dot (N-GQD)-modified three-dimensional ordered macroporous (3DOM) In2O3 composites are constructed and their NO2 response properties are studied. The results show that compared to pure 3DOM In2O3, reduced graphene oxide (rGO)/3DOM In2O3, and N-doped graphene sheets (NS)/3DOM In2O3, the N-GQDs/3DOM In2O3 sensing materials exhibit higher NO2 responses with fast response and recovery speed and low working temperature (100 °C). In addition, the detection limit of NO2 response for the optimal N-GQDs/In2O3 sensor is as low as 100 ppb. Upon exposure to CO, CH4, NH3, acetone, ethanol, toluene, and formaldehyde, only very weak responses could be observed, indicating good selectivity for the synthesized material. More attractively, the responses of the optimized N-GQDs/In2O3 sensor exhibit no obviously big fluctuation over 60 days, implying good long-term stability. We suggest that the formation of heterojunctions between 3DOM In2O3 and N-GQDs and the doping N atoms in N-GQDs play crucial roles in improving the NO2 sensing properties.

13.
World J Stem Cells ; 12(3): 222-240, 2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32266053

ABSTRACT

BACKGROUND: Radiation induces rapid bone loss and enhances bone resorption and adipogenesis, leading to an increased risk of bone fracture. There is still a lack of effective preventive or therapeutic method for irradiation-induced bone injury. Receptor activator of nuclear factor κB ligand (RANKL) provides the crucial signal to induce osteoclast differentiation and plays an important role in bone resorption. However, the mechanisms of radiation-induced osteoporosis are not fully understood. AIM: To investigate the role of CR6-interacting factor-1 (Crif1) in osteoclastogenesis after radiation and its possible mechanism. METHODS: C57BL/6 mice were exposed to Co-60 gamma rays and received 5 Gy of whole-body sublethal irradiation at a rate of 0.69 Gy/min. For in vitro study, mouse bone marrow mesenchymal stem/stromal cells (BM-MSCs) were irradiated with Co-60 at a single dose of 9 Gy. For osteoclast induction, monocyte-macrophage RAW264.7 cells were cocultured with mouse BM-MSCs for 7 d. ClusPro and InterProSurf were used to investigate the interaction interface in Crif1 and protein kinase cyclic adenosine monophosphate (cAMP)-activited catalytic subunit alpha complex. Virtual screening using 462608 compounds from the Life Chemicals database around His120 of Crif1 was carried out using the program Autodock_vina. A tetrazolium salt (WST-8) assay was carried out to study the toxicity of compounds to different cells, including human BM-MSCs, mouse BM-MSCs, and Vero cells. RESULTS: Crif1 expression increased in bone marrow cells after radiation in mice. Overexpression of Crif1 in mouse BM-MSCs and radiation exposure could increase RANKL secretion and promote osteoclastogenesis in vitro. Deletion of Crif1 in BM-MSCs could reduce both adipogenesis and RANKL expression, resulting in the inhibition of osteoclastogenesis. Deletion of Crif1 in RAW264.7 cells did not affect the receptor activator of nuclear factor κB expression or osteoclast differentiation. Following treatment with protein kinase A (PKA) agonist (forskolin) and inhibitor (H-89) in mouse BM-MSCs, Crif1 induced RANKL secretion via the cAMP/PKA pathway. Moreover, we identified the Crif1-protein kinase cyclic adenosine monophosphate-activited catalytic subunit alpha interaction interface by in silico studies and shortlisted interface inhibitors through virtual screening on Crif1. Five compounds dramatically suppressed RANKL secretion and adipogenesis by inhibiting the cAMP/PKA pathway. CONCLUSION: Crif1 promotes RANKL expression via the cAMP/PKA pathway, which induces osteoclastogenesis by binding to receptor activator of nuclear factor κB on monocytes-macrophages in the mouse model. These results suggest a role for Crif1 in modulating osteoclastogenesis and provide insights into potential therapeutic strategies targeting the balance between osteogenesis and adipogenesis for radiation-induced bone injury.

14.
Medicine (Baltimore) ; 98(44): e17686, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31689791

ABSTRACT

RATIONALE: Ependymomas are neuroepithelial tumors that typically occur in the central nervous system. Ependymomas arising in the mediastinum are exceedingly rare, with only approximately 9 isolated cases reported in the literature to date. PATIENT CONCERNS: A 35-year-old woman was referred to our hospital with complaints of progressive back pain for 3 months. Physical examination revealed decreased breathing sounds and tenderness. Contrast-enhanced computed tomography showed a soft tissue mass with heterogeneous enhancement in the right posterior mediastinum. DIAGNOSES: The diagnosis of primary mediastinal ependymomas (PMEs) was confirmed by postoperative histopathologic examination. INTERVENTIONS AND OUTCOMES: The patient underwent surgical resection of the tumor and experienced local recurrence with neck metastasis 2 years postoperatively. She underwent reoperation for the recurrent tumors and received postoperative radiotherapy and adjuvant chemotherapy. Two years later, the patient is doing well, with no evidence of tumor progression or recurrence. LESSONS: Since PMEs are exceedingly rare, treatment options are limited. Surgical resection seems to be the mainstay of treatment. Further evidence-based studies are required to prove the benefit of radiotherapy and chemotherapy in the treatment of PMEs.


Subject(s)
Ependymoma/diagnosis , Mediastinal Neoplasms/diagnosis , Adult , Diagnosis, Differential , Ependymoma/diagnostic imaging , Ependymoma/therapy , Female , Humans , Mediastinal Neoplasms/diagnostic imaging , Mediastinal Neoplasms/therapy , Neoplasm Recurrence, Local , Tomography, X-Ray Computed
15.
Front Biosci (Landmark Ed) ; 24(6): 1158-1166, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31136972

ABSTRACT

Experimental evidence has shown that chimeric switch receptor T (CSR-T) cells, activated by binding programmed death-ligand 1 on the tumor cell surface, lead to tumor regression in experimental animals. In this phase I clinical study, we evaluated the safety and bioactivity of CSR-T cell therapy in 14 patients with recurrent glioblastoma who were unresponsive to surgical resection and standard radiotherapy. Patients who received 108 CSR-T cells either intravenously or intracranially showed an increase in the levels of IFN-gamma and IL-6, respectively, in peripheral blood or cerbrospinal fluid (CSF). Moreover, the number of T cells present in CSF significantly increased after the treatment. Patients did not show grade 3 or 4 adverse effects. The evidence of in vivo biological activity and lack of adverse effects of treatment with CSR-T cells suggest that such treatment can be subjected to further analysis to show the efficacy of this new treatment strategy in the treatment of cancers that are not responsive to traditional therapeutic regimens.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Adult , Aged , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Female , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Interferon-gamma/blood , Interferon-gamma/cerebrospinal fluid , Interferon-gamma/immunology , Interleukin-6/blood , Interleukin-6/cerebrospinal fluid , Interleukin-6/immunology , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Recurrence, Local , Receptors, Chimeric Antigen/metabolism , Treatment Outcome
16.
Org Biomol Chem ; 17(6): 1572, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30681122

ABSTRACT

Correction for 'Ionic-liquid supported rapid synthesis of an N-glycan core pentasaccharide on a 10 g scale' by Wei Li et al., Org. Biomol. Chem., 2018, 16, 4720-4727.

17.
J Hazard Mater ; 360: 356-363, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30130694

ABSTRACT

Increasing the efficiency of dye degradation is a critical issue for the application for photocatalysis. It is one of the greatest challenges to enhance the utilization of photo generated carriers in semiconductor, especially for sunlight irradiation. In this study, I/C-codoped TiO2 was synthesized by a simple solvothermal-calcination method. The codoping interstitial carbon and substitutional iodine not only widened the light absorption range of the TiO2 photocatalysts, but also enhanced the separation of photo-induced carriers. The photocatalytic activities of RhB and MO degradation over the 4-I/C-TiO2 photocatalyst could reach 98.2% and 94.2% after 25 min visible light irradiation (λ ≥ 400 nm), respectively. Notably, 4-I/C-TiO2 showed good activity for MO and RhB mixed degradation and could also accomplish the photocatalytic degradation in the above mixed system under natural sunlight irradiation. According to the dark catalytic experiment, I/C-codoping could effectively accelerate the formation of hydroxyl radicals from the generated H2O2, which was formed for the enhanced photocatalytic activity of dye degradation. The gained knowledge may provide some insights into the photocatalytic degradation over the codoped TiO2 catalyst.

18.
J Neurol Surg B Skull Base ; 79(2): 205-216, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29868329

ABSTRACT

Objectives The objective was to explore further the surgical treatment of posttraumatic skull base defects with cerebrospinal fluid (CSF) leak and to identify the most common factors affecting the surgical treatment of posttraumatic skull base defect with CSF leak retrospectively. Materials and Methods This study included 144 patients with head trauma having skull base defect with CSF leak who had been surgically treated at Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University from 1998 to June 2016. There were 113 (78.5%) males and 31 (21.5%) females, with age ranging from 1 to 78 years and mean age of 26.58 ± 14.95 years. We explored the surgical approaches for the treatment of the skull base defect and the graft materials used and also measured the association among surgical approaches; location, size, and type of skull base defects; presence or absence of associated intracranial pathologies; postoperative complications; outcome; age; Glasgow outcome score (GOS) at discharge; and days of hospital stay. Results The location, size, and types of skull base defect and the presence of associated intracranial pathologies were the common factors identified not only for choosing the appropriate surgical approach but also for choosing the materials for defect repair, timing of the surgery, and the method used for the defect as well as leak repair. The statistically significant correlation with p < 0.001 was found in this study. Conclusion From this study, we could conclude that size, location, and types of the defect and the presence of associated intracranial injuries were the common factors that affected the surgical treatment of posttraumatic skull base defect with CSF leak. Hence, the importance of careful evaluation of these factors is essential for proper selection of the surgical approach and for avoiding unnecessary hassles.

19.
Org Biomol Chem ; 16(25): 4720-4727, 2018 07 07.
Article in English | MEDLINE | ID: mdl-29901065

ABSTRACT

A new and efficient Ionic Liquid-Supported Oligosaccharide Synthesis (ILSOS) strategy for an N-linked core pentasaccharide on a 10 g scale is reported. This new ILSOS includes a new spacer for an IL support, a new tagging strategy, and fast, efficient and orthogonal removal of the ionic-liquid support, producing the N-linked core pentasaccharide with direct applicability potential in a short time, with high yield and on a large gram scale.

20.
Adv Mater ; 28(38): 8413-8418, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27479932

ABSTRACT

A flexible and wearable lithium-oxygen (air) battery inspired by Chinese bamboo slips is constructed. In this novel battery, cathodes and anodes are woven without an air diffusion layer and any outer packaging; besides, the woven structure allows oxygen to access the cathodes from both sides freely, endowing the battery with a record energy density of over 523 W h kg-1 .

SELECTION OF CITATIONS
SEARCH DETAIL
...