Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
CNS Neurosci Ther ; 30(3): e14645, 2024 03.
Article in English | MEDLINE | ID: mdl-38432851

ABSTRACT

BACKGROUND: Noninvasive brain stimulation (NIBS) techniques are a promising tool for treating the negative symptoms of schizophrenia. Growing evidence suggests that different dimensions of negative symptoms have partly distinct underlying pathophysiological mechanisms. Previous randomized controlled trials (RCTs) have shown inconsistent impacts of NIBS across dimensions. OBJECTIVE: This systematic review and meta-analysis evaluated the effects of NIBS on general negative symptoms, and on specific domains, including blunted affect, alogia, asociality, anhedonia, and avolition. DATA SOURCES: PubMed, Web of Science, Embase, Cochrane CENTRAL, PsycINFO, OpenGrey, and Clinicaltrials.gov from the first date available to October, 2023. RESULTS: Among 1049 studies, we identified eight high-quality RCTs. NIBS significantly affects general negative symptoms (SMD = -0.54, 95% CI [-0.88, -0.21]) and all five domains (SMD = -0.32 to -0.63). Among dimensions, better effects have been shown for improvement of avolition (SMD = -0.47, 95% CI [-0.81, -0.13]) and anhedonia (SMD = -0.63, 95% CI [-0.98, -0.28]). Subgroup analyses of studies that applied once daily stimulation or >10 sessions showed significantly reduced negative symptom severity. CONCLUSION: NIBS exerts distinct effects across multiple dimensions of negative symptom, with treatment effects related to stimulation frequency and total sessions. These results need to be confirmed in dedicated studies.


Subject(s)
Anhedonia , Electric Stimulation Therapy , Schizophrenia , Humans , Brain , PubMed , Schizophrenia/therapy
2.
ACS Nano ; 18(13): 9713-9735, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507590

ABSTRACT

Cancer-associated fibroblasts (CAFs) assist in breast cancer (BRCA) invasion and immune resistance by overproduction of extracellular matrix (ECM). Herein, we develop FPC@S, a photodynamic immunomodulator that targets the ECM, to improve the photodynamic immunotherapy for fibrotic BRCA. FPC@S combines a tumor ECM-targeting peptide, a photosensitizer (protoporphyrin IX) and an antifibrotic drug (SIS3). After anchoring to the ECM, FPC@S causes ECM remodeling and BRCA cell death by generating reactive oxygen species (ROS) in situ. Interestingly, the ROS-mediated ECM remodeling can normalize the tumor blood vessel to improve hypoxia and in turn facilitate more ROS production. Besides, upon the acidic tumor microenvironment, FPC@S will release SIS3 for reprograming CAFs to reduce their activity but not kill them, thus inhibiting fibrosis while preventing BRCA metastasis. The natural physical barrier formed by the dense ECM is consequently eliminated in fibrotic BRCA, allowing the drugs and immune cells to penetrate deep into tumors and have better efficacy. Furthermore, FPC@S can stimulate the immune system and effectively suppress primary, distant and metastatic tumors by combining with immune checkpoint blockade therapy. This study provides different insights for the development of fibrotic tumor targeted delivery systems and exploration of synergistic immunotherapeutic mechanisms against aggressive BRCA.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Reactive Oxygen Species/metabolism , Extracellular Matrix/metabolism , Immunotherapy , Fibrosis , Tumor Microenvironment
4.
J Am Chem Soc ; 145(37): 20655-20664, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37639564

ABSTRACT

Developing alternative electrolysis techniques is crucial for advancing electrocatalysis in addition to tremendous efforts of material developments. Recently, pulse electrochemical CO2 reduction reaction (CO2RR) has demonstrated dramatic selectivity improvement toward multicarbon (C2+) products compared to potentiostatic electrochemical CO2RR, yet the underlying mechanisms remain little understood. Herein, we develop a fast time-resolved in situ Raman spectroscopic method with a time resolution of 0.25 s. We reveal that pulse electrolysis improves the C2+ selectivity of CO2RR through dynamic controls of the surface CuxO/Cu composition that would be unachievable under potentiostatic electrolysis. The population of the surface-adsorbed CO intermediate (COads) is characterized to be the determining factor in controlling reaction selectivity, which depicts the C2+/C1 selectivity of CO2RR under pulse conditions. Meanwhile, the vibrational character of COads, despite transforming dynamically between the low-frequency and high-frequency modes is characterized not to be the key factor in controlling the reaction selectivity. Such an active control of catalyst surface compositions and reaction intermediates enabled by pulse electrolysis offer a general way of regulating the electrocatalysis performance of broad electrochemical reactions beyond CO2RR.

5.
J Am Chem Soc ; 145(25): 14101-14111, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37321595

ABSTRACT

Developing industrial-grade electroreduction of CO2 to produce formate (HCOO-)/formic acid (HCOOH) depends on highly active electrocatalysts. However, structural changes due to the inevitable self-reduction of catalysts result in severe long-term stability issues at industrial-grade current density. Herein, linear cyanamide anion ([NCN]2-)-constructed indium cyanamide nanoparticles (InNCN) were investigated for CO2 reduction to HCOO- with a Faradaic efficiency of up to 96% under a partial current density (jformate) of 250 mA cm-2. Bulk electrolysis at a jformate of 400 mA cm-2 requires only -0.72 VRHE applied potential with iR correction. It also achieves continuous production of pure HCOOH at ∼125 mA cm-2 for 160 h. The excellent activity and stability of InNCN are attributed to its unique structural features, including strongly σ-donating [NCN]2- ligands, the potential structural transformation of [N═C═N]2- and [N≡C-N]2-, and the open framework structure. This study affirms metal cyanamides as promising novel materials for electrocatalytic CO2 reduction, broadening the variety of CO2 reduction catalysts and the understanding of structure-activity relationships.

6.
Angew Chem Int Ed Engl ; 61(6): e202112204, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34860450

ABSTRACT

The role of intermediate phases in CeO2 mesocrystal formation from aqueous CeIII solutions subjected to γ-radiation was studied. Radiolytically formed hydroxyl radicals convert soluble CeIII into less soluble CeIV . Transmission electron microscopy (TEM) and X-ray diffraction studies of samples from different stages of the process allowed the identification of several stages in CeO2 mesocrystal evolution following the oxidation to CeIV : (1) formation of hydrated CeIV hydroxides, serving as intermediates in the liquid-to-solid phase transformation; (2) CeO2 primary particle growth inside the intermediate phase; (3) alignment of the primary particles into "pre-mesocrystals" and subsequently to mesocrystals, guided by confinement of the amorphous intermediate phase and accompanied by the formation of "mineral bridges". Further alignment of the obtained mesocrystals into supracrystals occurs upon slow drying, making it possible to form complex hierarchical architectures.

7.
J Colloid Interface Sci ; 583: 71-79, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32979712

ABSTRACT

A γ-radiation induced synthesis method is used to fabricate manganese oxide catalysts through both reduction and oxidation routes. It is shown that the morphology, composition and electrochemical performance of the produced manganese oxide particles can be tuned by altering the redox conditions. The catalysts prepared via radiolytic oxidation have a hollow spherical morphology, possess γ-MnO2 structure and show high catalytic activity for the complete four-electron reaction pathway of the oxygen reduction reaction (ORR) in alkaline electrolyte. Meanwhile, the catalysts synthesized via radiolytic reduction possess a rod-like morphology with a Mn3O4 bulk structure and favour the incomplete two-electron reaction pathway for ORR. The high catalytic activity of the manganese oxide synthesized via the oxidation route can be attributed to high electrochemical surface area and increased amount of Mn3+ on the surface as compared to those in the sample obtained via the reduction route.

8.
Chem Commun (Camb) ; 56(10): 1589-1592, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-31934696

ABSTRACT

Single crystals of Spiro(TFSI)2 were grown, the optical and electronic properties were characterized and compared with neutral Spiro-OMeTAD. Density-functional theory was used to get insights into binding and band structure properties. The flat valence bands indicate a rather limited orbital overlap in Spiro(TFSI)2.

9.
Sci Rep ; 9(1): 10423, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31320716

ABSTRACT

We develop a photoluminescence-based technique to determine dopant profiles of localized boron-diffused regions in silicon wafers and solar cell precursors employing two excitation wavelengths. The technique utilizes a strong dependence of room-temperature photoluminescence spectra on dopant profiles of diffused layers, courtesy of bandgap narrowing effects in heavily-doped silicon, and different penetration depths of the two excitation wavelengths in silicon. It is fast, contactless, and nondestructive. The measurements are performed at room temperature with micron-scale spatial resolution. We apply the technique to reconstruct dopant profiles of a large-area (1 cm × 1 cm) boron-diffused sample and heavily-doped regions (30 µm in diameter) of passivated-emitter rear localized-diffused solar cell precursors. The reconstructed profiles are confirmed with the well-established electrochemical capacitance voltage technique. The developed technique could be useful for determining boron dopant profiles in small doped features employed in both photovoltaic and microelectronic applications.

10.
Dalton Trans ; 47(45): 16139-16144, 2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30378612

ABSTRACT

In this work we have optimized the γ-radiation induced synthesis of Cu-Cu2O particles from aqueous CuSO4 solution by investigating the effect of pH. The obtained precipitate was analyzed by XRD and SEM techniques. The results indicated that at solution pH lower than 3.75, quasi-spherical Cu agglomerates can be formed while at pH higher than 4.40 only octahedron-shaped Cu2O particles are produced. At solution pH in the range from 3.75 to 4.40, a Cu-Cu2O mixture is produced. It was found that the relative amount of Cu2O in the Cu-Cu2O precipitate increases with pH in the studied range. The influence of solution pH on the Cu/Cu2O ratios in the product can be explained on the basis of pH-dependent competition kinetics between the reactions leading to either Cu or Cu2O formation. As a consequence, the composition and morphology of the Cu-Cu2O precipitate can be tuned by controlling pH of the aqueous CuSO4 solution during the γ-radiation induced synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...