Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Front Cell Infect Microbiol ; 14: 1407051, 2024.
Article in English | MEDLINE | ID: mdl-38947127

ABSTRACT

The Cecum is a key site for cellulose digestion in nutrient metabolism of intestine, but its mechanisms of microbial and gene interactions has not been fully elucidated during pathogenesis of obesity. Therefore, the cecum tissues of the New Zealand rabbits and their contents between the high-fat diet-induced group (Ob) and control group (Co) were collected and analyzed using multi-omics. The metagenomic analysis indicated that the relative abundances of Corallococcus_sp._CAG:1435 and Flavobacteriales bacterium species were significantly lower, while those of Akkermansia glycaniphila, Clostridium_sp._CAG:793, Mycoplasma_sp._CAG:776, Mycoplasma_sp._CAG:472, Clostridium_sp._CAG:609, Akkermansia_sp._KLE1605, Clostridium_sp._CAG:508, and Firmicutes_bacterium_CAG:460 species were significantly higher in the Ob as compared to those in Co. Transcriptomic sequencing results showed that the differentially upregulated genes were mainly enriched in pathways, including calcium signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway, while the differentially downregulated genes were mainly enriched in pathways of NF-kappaB signaling pathway and T cell receptor signaling pathway. The comparative analysis of metabolites showed that the glycine, serine, and threonine metabolism and cysteine and methionine metabolism were the important metabolic pathways between the two groups. The combined analysis showed that CAMK1, IGFBP6, and IGFBP4 genes were highly correlated with Clostridium_sp._CAG:793, and Akkermansia_glycaniphila species. Thus, the preliminary study elucidated the microbial and gene interactions in cecum of obese rabbit and provided a basis for further studies in intestinal intervention for human obesity.


Subject(s)
Cecum , Diet, High-Fat , Gastrointestinal Microbiome , Obesity , Animals , Rabbits , Diet, High-Fat/adverse effects , Cecum/microbiology , Cecum/metabolism , Obesity/metabolism , Obesity/microbiology , Host Microbial Interactions , Metagenomics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Gene Regulatory Networks , Male , Gene Expression Profiling
2.
Epigenomics ; : 1-20, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38869483

ABSTRACT

Aim: This study aimed to investigate the functions of ZNF582-AS1 and ZNF582 in esophageal cancer (EC). Materials & methods: Bioinformatics analysis, qRT-PCR and western blot were used to analyze the expression levels. Biological functions were evaluated using cell-counting kit 8, colony formation, Transwell assays and flow cytometry. FISH was used to detect subcellular localization, and methylation-specific PCR determined gene methylation levels. Animal experiments validated the impact on tumor progression. Results: ZNF582-AS1 and ZNF582 were highly methylated and downregulated in EC. Overexpression of ZNF582-AS1 up-regulated the expression of ZNF582, thereby inhibiting EC cell viability and metastasis, promoting apoptosis and inhibiting tumor growth. Conclusion: Low expression of ZNF582-AS1/ZNF582 mediated by DNA hypermethylation facilitates the malignant progression of EC.


Promoter hypermethylation silences ZNF582-AS1 and ZNF582, driving esophageal cancer progression, which has the potential for novel therapeutic strategies. # Methylation # Esophageal Cancer.

3.
J Bioenerg Biomembr ; 56(2): 181-191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411863

ABSTRACT

Lung adenocarcinoma (LUAD) is one of the most lethal and common malignancies. The energy metabolism of LUAD is a critical factor affecting its malignant progression, and research on this topic can aid in the development of novel cancer treatment targets. Bioinformatics analysis of the expression of long non-coding RNA (lncRNA) LINC00665 in LUAD was performed. Downstream regulatory molecules of LINC00665 were predicted using the StarBase database. We used quantitative reverse transcription polymerase chain reaction and western blot to measure the expression at mRNA and protein levels, respectively. The effects of the LINC00665/let-7c-5p/HMMR axis on cell viability in vitro were tested by CCK-8 assay. The regulatory effects on glycolysis were analyzed by extracellular acidification rate, oxygen consumption rate, glucose uptake, adenosine triphosphate production, and lactate production. The predicted competitive endogenous RNA mechanism between LINC00665 and let-7c-5p/HMMR was verified by a dual-luciferase reporter gene assay. LINC00665 was upregulated in LUAD. Silencing LINC00665 inhibited tumor proliferation and reduced the glycolytic activity of tumor cells. Additionally, the expression of LINC00665 had a negative correlation with that of let-7c-5p, while the expression of HMMR was remarkably inhibited by let-7c-5p. HMMR could affect the development of LUAD by influencing glycolytic capacity. Mechanistically, LINC00665 acted as a molecular sponge to absorb let-7c-5p and targeted HMMR. Transfection of let-7c-5p inhibitor or overexpression of HMMR plasmid could reverse the inhibition in proliferation and glycolysis of LUAD cells induced by silencing of LINC00665. In summary, this study demonstrated that the LINC00665/let-7c-5p/HMMR regulatory axis promoted the tumorigenesis of LUAD by enhancing aerobic glycolysis, suggesting that this regulatory axis was an effective target for inhibiting LUAD progression and providing theoretical support for the development of new drugs for LUAD.


Subject(s)
Adenocarcinoma , MicroRNAs , Humans , Glycolysis , Energy Metabolism , Cell Survival , Lung , MicroRNAs/genetics , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
4.
Article in English | MEDLINE | ID: mdl-37725345

ABSTRACT

OBJECTIVES: This study aimed to investigate whether adding glue injection to three-dimensional computed tomography bronchography and angiography (3D-CTBA) has extra benefits to facilitate anatomical segmentectomy for pulmonary nodules. METHODS: We conducted a randomized controlled trial. The patients undergoing thoracoscopic segmentectomy assisted with 3D-CTBA simulation were enrolled. Then, they were divided into the 3D-CTBA group and the glue-labelling group who received additional computed tomography-guided percutaneous glue (2-octyl cyanoacrylate) injection to label the nodules. The primary outcome was the resection rate of the nodules, and the secondary measures included the operation time, complications and thorax drainage. RESULTS: A total of 173 patients were randomized into the 3D-CTBA group (89 patients) and glue-labelling group (84 patients) between January 2018 and March 2019. Before the segmentectomy, the patients using glue labelling recorded 5 (6.0%) cases of pneumothorax, 2 (2.4%) cases of haemothorax and 1 (1.2%) case of severe chest pain. All the surgical procedure was performed fluently and safely. The resection rate of the nodules was 100% in both groups. Furthermore, these patients demonstrated similar operation time [(141.5 ± 41.9) vs (142.1 ± 38.9) min], estimated blood loss [(111.3 ± 74.0) vs (106.0 ± 63.8) ml], duration of chest tube duration [(5.1 ± 3.0) vs (5.0 ± 3.5) days] and total drainage volume [(872.3 ± 643.1) vs (826.7 ± 806.0) ml], with a P-value of >0.05 respectively. In addition, 6 (7.1%) patients in the glue-labelling group and 6 (6.7%) patients in the 3D-CTBA group reported air leakage (>5 days) and chylothorax. CONCLUSIONS: Noninvasive 3D-CTBA alone is probably sufficient to facilitate anatomical segmentectomy. The additional invasive glue labelling could be avoided in selected patients who undergo intentional segmentectomy. CLINICAL TRIAL REGISTRATION: The trial was registered under the Chinese Clinical Trial Registry (ChiCTR). Identifier: ChiCTR1800018293, https://www.chictr.org.cn/showproj.html?proj=29345.

5.
Front Oncol ; 13: 1180723, 2023.
Article in English | MEDLINE | ID: mdl-37476379

ABSTRACT

As part of the tumor microenvironment (TME), collagen plays a significant role in cancer fibrosis formation. However, the collagen family expression profile and clinical features in lung adenocarcinoma (LUAD) are poorly understood. The objective of the present work was to investigate the expression pattern of genes from the collagen family in LUAD and to develop a predictive signature based on collagen family. The Cancer Genome Atlas (TCGA) samples were used as the training set, and five additional cohort samples obtained from the Gene Expression Omnibus (GEO) database were used as the validation set. A predictive model based on five collagen genes, including COL1A1, COL4A3, COL5A1, COL11A1, and COL22A1, was created by analyzing samples from the TCGA cohort using LASSO Cox analysis and univariate/multivariable Cox regression. Using Collagen-Risk scores, LUAD patients were then divided into high- and low-risk groups. KM survival analysis showed that collagen signature presented a robust prognostic power. GO and KEGG analyses confirmed that collagen signature was associated with extracellular matrix organization, ECM-receptor interaction, PI3K-Akts and AGE-RAGE signaling activation. High-risk patients exhibited a considerable activation of the p53 pathway and cell cycle, according to GSEA analysis. The Collage-Risk model showed unique features in immune cell infiltration and tumor-associated macrophage (TAM) polarization of the TME. Additionally, we deeply revealed the association of collagen signature with immune checkpoints (ICPs), tumor mutation burden (TMB), and tumor purity. We first constructed a reliable prognostic model based on TME principal component-collagen, which would enable clinicians to treat patients with LUAD more individually.

6.
Biochem Genet ; 61(4): 1528-1547, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36658310

ABSTRACT

Lung adenocarcinoma (LUAD) is a common malignancy. Many studies have shown that LUAD is resistant to gemcitabine chemotherapy, resulting in poor treatment outcomes in patients. We designed this study to reveal influences of hsa-miR-195-5p/E2F7/CEP55 axis on gemcitabine resistance and autophagy of LUAD cells. The expression data of LUAD-related mRNAs were downloaded from TCGA-LUAD database for differential expression analysis. The bioinformatics databases (hTFtarget, starBase and TargetScan) were used to predict the upstream and downstream regulatory molecules of E2F7. Then the binding relationships between E2F7 and regulatory molecules were verified by ChIP and dual-luciferase reporter assay. qRT-PCR and western blot were used to detect the mRNA and protein levels of has-miR-195-5p, E2F7, and CEP55. CCK-8 assay was used to analyze the half-maximal inhibitory concentration (IC50) and cell proliferation ability of LUAD cells after gemcitabine treatment. Apoptosis was detected by flow cytometry. Apoptosis/autophagy markers and LC3 aggregation were detected by western blot and immunofluorescence, respectively. Finally, the mouse transplantation model was constructed to verify the regulation mechanism in vivo. In LUAD cells and tissues, E2F7 and CEP55 were highly expressed, while has-miR-195-5p was relatively less expressed. The ChIP or dual-luciferase assays demonstrated the binding relationships of E2F7 to the CEP55 promoter region and has-miR-195-5p to the 3'-UTR of E2F7. Cell experiments demonstrated that overexpression of hsa-miR-195-5p stimulated LUAD cell apoptosis and inhibited autophagy and gemcitabine resistance, while further overexpression E2F7/CEP55 could reverse the impact by hsa-miR-195-5p overexpression. In vivo experiments identified that hsa-miR-195-5p/E2F7/CEP55 axis constrained the growth of LUAD tumor. Hsa-miR-195-5p promoted apoptosis, repressed proliferation, and autophagy via E2F7/CEP55 and reduced gemcitabine resistance in LUAD, indicating that hsa-miR-195-5p/E2F7/CEP55 may be a novel target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Animals , Mice , Gemcitabine , Adenocarcinoma of Lung/genetics , MicroRNAs/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , 3' Untranslated Regions , Autophagy , Cell Cycle Proteins , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
7.
Mutat Res ; 826: 111811, 2023.
Article in English | MEDLINE | ID: mdl-36603370

ABSTRACT

Searching for differential genes in lung adenocarcinoma (LUAD) is vital for research. Hyaluronan mediated motility receptor (HMMR) promotes malignant progression of cancer patients. However, the molecular regulators of HMMR-mediated LUAD onset are unknown. This work aimed to study the relevance of HMMR to proliferation, migration and invasion of LUAD cells. Let-7c-5p and HMMR levels in LUAD cells and HLF-a cells were assessed, and their correlation was also detected. Their interaction was determined by dual-luciferase experiments and qRT-PCR. Cell proliferation, migration and invasion potentials in vitro were validated through cell counting kit-8 (CCK-8), colony formation, scratch healing, and transwell assays. The expression of HMMR was examined by qRT-PCR and western blot and the expression of let-7c-5p was assayed by qRT-PCR. It was found that HMMR level was increased in LUAD and negatively correlated with let-7c-5p level. Let-7c-5p directly targeted HMMR to repress LUAD cell proliferation, migration and invasion. The above data illustrated that the let-7c-5p/HMMR axis may provide certain therapeutic value for LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , MicroRNAs/genetics
8.
Sci Rep ; 12(1): 16828, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207435

ABSTRACT

To evaluate the prognostic role of the preoperative plasma lipid profile, including triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in patients with lung squamous cell carcinoma (LUSC) who underwent complete resection. Clinical data, including preoperative plasma profile levels, were retrospectively collected and reviewed in 300 patients with LUSC who underwent radical lung resection between 2016 and 2017. The overall survival (OS) and disease-free survival (DFS) were assessed by the Kaplan-Meier method and the Cox proportional hazards regression model. TG ≤ 1.35, HDL-C ≤ 1.17, and LDL-C ≤ 2.32 were deemed as independent preoperative risk factors for OS, and HDL-C ≤ 1.17 was an independent preoperative risk factor for DFS. In the multivariate analyses involving OS and DFS, a decreased HDL-C level was significantly associated with worse OS (HR, 0.546; 95% CI, 0.380-0.784, P = 0.001) and DFS (HR, 0.644; 95% CI, 0.422-0.981, P = 0.041). Additionally, an increased TG (HR, 0.546; 95% CI, 0.366-0.814, P = 0.003) or LDL-C (HR, 0.652; 95% CI, 0.456-0.933, P = 0.019) level was significantly associated with better OS. In patients with LUSC, decreased levels of HDL-C may predict worse outcomes for both DFS and OS, while increased TG or LDL-C levels may predict better OS.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Carcinoma, Squamous Cell/surgery , Cholesterol, HDL , Cholesterol, LDL , Humans , Lipoproteins, HDL , Lung , Lung Neoplasms/surgery , Retrospective Studies , Triglycerides
9.
J Clin Lab Anal ; 36(6): e24419, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35403268

ABSTRACT

BACKGROUND: Integrin ß (ITGB) superfamily plays an essential role in the intercellular connection and signal transmission. It was exhibited that overexpressing of ITGB family members promotes the malignant progression of lung adenocarcinoma (LUAD), but the relationship between ITGB superfamily and the LUAD prognosis remains unclear. METHODS: In this study, the samples were assigned to different subgroups utilizing non-negative matrix factorization clustering according to the expression of ITGB family members in LUAD. Kaplan-Meier (K-M) survival analysis revealed the significant differences in the prognosis between different ITGB subgroups. Subsequently, we screened differentially expressed genes among different subgroups and conducted univariate Cox analysis, random forest feature selection, and multivariate Cox analysis. 9-feature genes (FAM83A, AKAP12, PKP2, CYP17A1, GJB3, TMPRSS11F, KRT81, MARCH4, and STC1) in the ITGB superfamily were selected to establish a prognostic assessment model for LAUD. RESULTS: In accordance with the median risk score, LUAD samples were divided into high- and low-risk groups. The receiver operating characteristic (ROC) curve of LUAD patients' survival was predicted via K-M survival curve and principal component analysis dimensionality reduction. This model was found to have a favorable performance in LUAD prognostic assessment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of differentially expressed genes between groups and Gene Set Enrichment Analysis (GSEA) of intergroup samples confirmed that the high- and low-risk groups had evident differences mainly in the function of extracellular matrix (ECM) interaction. Risk score and univariate and multivariate Cox regression analyses of clinical factors showed that the prognostic model could be applied as an independent prognostic factor for LUAD. Then, we draw the nomogram of 1-, 3-, and 5-year survival of LUAD patients predicted with the risk score and clinical factors. Calibration curve and clinical decision curve proved the favorable predictive ability of nomogram. CONCLUSION: We constructed a LUAD prognostic risk model based on the ITGB superfamily, which can provide guidance for clinicians on their prognostic judgment.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/pathology , Humans , Integrins/genetics , Lung Neoplasms/pathology , Neoplasm Proteins , Prognosis , Risk Assessment
10.
Opt Lett ; 47(8): 1928-1931, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35427302

ABSTRACT

Non-line-of-sight (NLOS) imaging enables people to see a hidden scene based on multiple interaction information between the object and the carrier. There have been numerous studies focusing on the physical modeling of photon scattering, but few have explored the detection process, which also plays a vital role. In this paper, we put forward a novel, to the best of our knowledge, detection methodology for NLOS imaging based on time-sequential first photon (TSFP) data. We verify the method with both synthetic and experimental data, showing a dramatic reduction in acquisition time cost compared with traditional methods for the same reconstruction quality. This work may contribute to real-time and photon-starved NLOS imaging for practical applications.


Subject(s)
Diagnostic Imaging , Photons , Humans
11.
Light Sci Appl ; 10(1): 198, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34561418

ABSTRACT

Non-line-of-sight imaging aims at recovering obscured objects from multiple scattered lights. It has recently received widespread attention due to its potential applications, such as autonomous driving, rescue operations, and remote sensing. However, in cases with high measurement noise, obtaining high-quality reconstructions remains a challenging task. In this work, we establish a unified regularization framework, which can be tailored for different scenarios, including indoor and outdoor scenes with substantial background noise under both confocal and non-confocal settings. The proposed regularization framework incorporates sparseness and non-local self-similarity of the hidden objects as well as the smoothness of the signals. We show that the estimated signals, albedo, and surface normal of the hidden objects can be reconstructed robustly even with high measurement noise under the proposed framework. Reconstruction results on synthetic and experimental data show that our approach recovers the hidden objects faithfully and outperforms state-of-the-art reconstruction algorithms in terms of both quantitative criteria and visual quality.

12.
Front Genet ; 12: 681277, 2021.
Article in English | MEDLINE | ID: mdl-34306024

ABSTRACT

This study aimed to establish a prognostic risk model for lung adenocarcinoma (LUAD). We firstly divided 535 LUAD samples in TCGA-LUAD into high-, medium-, and low-immune infiltration groups by consensus clustering analysis according to immunological competence assessment by single-sample gene set enrichment analysis (ssGSEA). Profile of long non-coding RNAs (lncRNAs) in normal samples and LUAD samples in TCGA was used for a differential expression analysis in the high- and low-immune infiltration groups. A total of 1,570 immune-related differential lncRNAs in LUAD were obtained by intersecting the above results. Afterward, univariate COX regression analysis and multivariate stepwise COX regression analysis were conducted to screen prognosis-related lncRNAs, and an eight-immune-related-lncRNA prognostic signature was finally acquired (AL365181.2, AC012213.4, DRAIC, MRGPRG-AS1, AP002478.1, AC092168.2, FAM30A, and LINC02412). Kaplan-Meier analysis and ROC analysis indicated that the eight-lncRNA-based model was accurate to predict the prognosis of LUAD patients. Simultaneously, univariate COX regression analysis and multivariate COX regression analysis were undertaken on clinical features and risk scores. It was illustrated that the risk score was a prognostic factor independent from clinical features. Moreover, immune data of LUAD in the TIMER database were analyzed. The eight-immune-related-lncRNA prognostic signature was related to the infiltration of B cells, CD4+ T cells, and dendritic cells. GSEA enrichment analysis revealed significant differences in high- and low-risk groups in pathways like pentose phosphate pathway, ubiquitin mediated proteolysis, and P53 signaling pathway. This study helps to treat LUAD patients and explore molecules related to LUAD immune infiltration to deeply understand the specific mechanism.

13.
Front Cell Dev Biol ; 9: 641960, 2021.
Article in English | MEDLINE | ID: mdl-33748133

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) turns out to be one of the most prevalent cancer types, leading to a relatively high mortality among worldwide sufferers. In this study, gene microarray data of ESCC patients were obtained from the GEO database, with the samples involved divided into a training set and a validation set. Based on the immune-related differential long non-coding RNAs (lncRNAs) we identified, a prognostic eight-lncRNA-based risk signature was constructed following regression analyses. Then, the predictive capacity of the model was evaluated in the training set and validation set using survival curves and receiver operation characteristic curves. In addition, univariate and multivariate regression analyses based on clinical information and the model-based risk score also demonstrated the ability of the risk score in independently determining the prognosis of patients. Besides, based on the CIBERSORT tool, the abundance of immune infiltrates in tumor samples was scored, and a significant difference was presented between the high- and low- risk groups. Correlation analysis with immune checkpoints (PD1, PDL1, and CTLA4) indicated that the eight-lncRNA signature-based risk score was negatively correlated with PD1 expression, suggesting that the eight-lncRNA signature may have an effect in immunotherapy for ESCC. Finally, GO annotation was performed for the differential mRNAs that were co-expressed with the eight lncRNAs, and it was uncovered that they were remarkably enriched in immune-related biological functions. These results suggested that the eight-lncRNA signature-based risk model could be employed as an independent biomarker for ESCC prognosis and might play a part in evaluating the response of ESCC to immunotherapy with immune checkpoint blockade.

14.
Mol Cell Biochem ; 475(1-2): 137-149, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32813142

ABSTRACT

YAP and TAZ are important co-activators of various biological processes in human body. YAP/TAZ plays a vital role in the development of pulmonary fibrosis. Dysregulation of the YAP/TAZ signaling pathway is one of the most important causes of pulmonary fibrosis. Therefore, considering its crucial role, summary of the signal mechanism of YAP/TAZ is of certain guiding significance for the research of YAP/TAZ as a therapeutic target. The present review provided a detailed introduction to various YAP/TAZ-related signaling pathways and clarified the specific role of YAP/TAZ in these pathways. In the meantime, we summarized and evaluated possible applications of YAP/TAZ in the treatment of pulmonary fibrosis. Overall, our study is of guiding significance for future research on the functional mechanism of YAP/TAZ underlying lung diseases as well as for identification of novel therapeutic targets specific to pulmonary fibrosis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Pulmonary Fibrosis/metabolism , Transcription Factors/metabolism , Animals , Humans , Pulmonary Fibrosis/pathology , Signal Transduction , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
15.
PLoS One ; 15(5): e0233283, 2020.
Article in English | MEDLINE | ID: mdl-32437446

ABSTRACT

OBJECTIVE: To investigate the value of CEP55 as a diagnostic marker and independent prognostic factor in lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), and to analyze its co-expression genes and related signaling pathways. METHODS: TCGA database and GEO database were used to analyze the expression of CEP55 in LUAD and LUSC compared with normal tissues. The co-expression genes of CEP55 in LUAD and LUSC were excavated by cBioPortal and enriched by KEGG and GO. Establishing Receiver operating characteristic (ROC) curve to evaluate the value of CEP55 as a diagnostic and prognostic factor. The association between CEP55 expression and the clinicopathological features was evaluated using χ2 tests. ROC curves for diagnosis and prognosis detection were constructed. Prognostic values were analyzed by univariate and multivariate Cox regression models. RESULTS: Compared with normal lung tissues, CEP55 expression was significantly upregulated in both LUAD and LUSC. ROC curve analysis showed that CEP55 could be used as an effective diagnostic target for LUAD (AUC = 0.969) and LUSC (AUC = 0.994). When CEP55 gene was selected as an independent prognostic factor, high expression of CEP55 was more disadvantageous to OS and RFS of LUAD patients (P<0.05), but no significant difference was found in LUSC patients (P>0.05). The number of co-expression genes of CEP55 in LUAD is more than that in LUSC, and is related to cell cycle, DNA replication and P53 signaling pathway. CONCLUSION: CEP55 can be used as a diagnostic marker for LUAD and LUSC, but only as an independent prognostic factor for LUAD rather than LUSC.


Subject(s)
Adenocarcinoma of Lung/genetics , Carcinoma, Squamous Cell/genetics , Cell Cycle Proteins/genetics , Lung Neoplasms/genetics , Adenocarcinoma of Lung/diagnosis , Aged , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/diagnosis , Databases, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/diagnosis , Male , Middle Aged , Prognosis , Proportional Hazards Models , Signal Transduction/genetics
16.
Article in English | MEDLINE | ID: mdl-32154226

ABSTRACT

OBJECTIVE: In the present study, we tried to describe the role of miR-29c-3p in esophageal carcinoma (EC) and the relationship of miR-29c-3p with CCNA2 as well as cell cycle, accordingly revealing the potential molecular mechanism across cell proliferation, migration and invasion. METHODS: Expression profiles of EC miRNAs and matched clinical data were accessed from TCGA database for differential and survival analyses. Bioinformatics databases were employed to predict the downstream targets of the potential miRNA, and enrichment analysis was performed on the miRNA and corresponding target gene using GSEA software. qRT-PCR was conducted to detect the expression levels of miR-29c-3p and CCNA2 mRNA in EC tissues and cells, and Western blot was performed for the examination of CCNA2, CDK1 and p53 protein levels. Subsequently, cells were harvested for MTT, Transwell as well as flow cytometry assays to examine cell viability, migration, invasion and cell cycle. Dual-luciferase reporter gene assay and RIP were carried out to further investigate and verify the targeted relationship between miR-29c-3p and CCNA2. RESULTS: MiR-29c-3p was shown to be significantly down-regulated in EC tissues and able to predict poor prognosis. CCNA2 was found to be a downstream target of miR-29c-3p and mainly enriched in cell cycle and p53 signaling pathway, whereas miR-29c-3p was remarkably activated in cell cycle. MiR-29c-3p overexpression inhibited cell proliferation, migration and invasion, as well as arrested cells in G0/G1 phase. As suggested by dual-luciferase reporter gene assay and RIP, CCNA2 was under the regulation of miR-29c-3p, and the negative correlation between the two genes was verified. Silencing CCNA2 could suppress cell proliferation, migration and invasion, as well as activate p53 pathway, even was seen to reverse the inhibitory effect of PFTß on p53. Besides, in the presence of low miR-29c-3p, CCNA2 was up-regulated while p53 was simultaneously inhibited, resulting in the promotion of cell migration, invasion and cell cycle arrest. CONCLUSION: MiR-29c-3p plays a regulatory role in EC tumorigenesis and development. MiR-29c-3p can target CCNA2 to mediate p53 signaling pathway, finally attributing to the inhibition of cell proliferation, migration and invasion, and making cells arrest in G0/G1 phase.

17.
Opt Express ; 25(18): 21981-21992, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-29041488

ABSTRACT

Experimental amplification of 10-ns pulses to an energy of 12.2 J at the repetition rate of 1-10 Hz is reported from a diode-pumped room-temperature distributed active mirror amplifier chain (DAMAC) based on Nd:YAG slabs. Efficient power scaling at the optical-optical efficiency of 20.6% was achieved by suppressing the transverse parasitic oscillation with ASE absorbers. To the best of our knowledge, this is the first demonstration of a diode-pumped Nd:YAG active-mirror laser with nanosecond pulse energy beyond 10 joules. The verified DAMAC concept holds the promise of scaling the energy to a 50 J level and higher by adding 10-12 more pieces of active mirror in the chain.

18.
World J Surg Oncol ; 15(1): 26, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-28095912

ABSTRACT

BACKGROUND: The human CDH4 gene, which encodes the R-cadherin protein, has an important role in cell migration and cell adhesion, sorting, tissue morphogenesis, and tumor genesis. This study analyzed the relationship of CDH4 mRNA expression with lung cancer. METHODS: Real time PCR was applied to detect CDH4 mRNA transcription in 142 paired cases of lung cancer and noncancerous regions. RESULTS: No correlation was identified between CDH4 mRNA expression and gender, age, lymphnode metastasis, TNM stage, family history, smoking state, drinking state (P > 0.05), but grade and histotype (P < 0.05). The relative CDH4 mRNA value was remarkably decreased in lung cancer tissues compared with noncancerous tissues (P = 0.001). CONCLUSIONS: We found that CDH4 mRNA expression was associated with grade and histotype. What is more, the relative CDH4 mRNA value was decreased in the lung cancer tissues. Our results suggested that CDH4 might be a putative tumor suppressor gene (TSG) in lung cancer.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Cadherins/genetics , Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/genetics , Adenocarcinoma/secondary , Adenocarcinoma/surgery , Aged , Carcinoma, Squamous Cell/secondary , Carcinoma, Squamous Cell/surgery , Case-Control Studies , Female , Follow-Up Studies , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Lymphatic Metastasis , Male , Neoplasm Grading , Neoplasm Staging , Prognosis , Real-Time Polymerase Chain Reaction , Small Cell Lung Carcinoma/secondary , Small Cell Lung Carcinoma/surgery
20.
J Cancer Res Ther ; 11 Suppl 1: C49-55, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26323924

ABSTRACT

PURPOSE: Genetic polymorphisms of ribonucleotidereductase M1 (RRM1) was a DNA repair gene, which may affect patients' response to platinum-based chemotherapy or gemcitabine-based chemotherapy. We retrospectively assessed whether single nucleotide polymorphisms (SNPs) of RRM1 can be used to predict overall survival (OS), progression free survival and response in nonsmall cell lung cancer (NSCLC) patients treated with platinum-based regimens as first-line chemotherapy. SUBJECTS AND METHODS: The genotypes of four tagSNPs (RRM1 -316C > A, RRM1 -269C > A, RRM1 -702G > A and RRM1 -585T > G) were determined by SNaPshot detection technology and sequencing approaches in 184 advanced NSCLC patients by using peripheral blood. RESULTS: The overall response rate for 178 patients was 40.2% and the disease control rate was 90.2%. In patients who had ever smoked, a significant correlation was observed between the genotype of RRM1 -269C > A and response (P = 0.046). There was a significant difference in response according to the genotype of RRM1 -702G > A (P = 0.043). Using Log-rank test, we found that patients with the allelotype (CC) of RRM1 -269C > A had a shorter OS (P = 0.006) than the allelotype (CA + AA). CONCLUSION: The genotype of RRM1 -269C > A was significantly associated with platinum-based chemotherapy sensitivity in smoking patients and can be used to predict OS in advanced NSCLC patients who received platinum-based chemotherapy or gemcitabine-based chemotherapy. And the genotype of RRM1 -702G > A can serve as a biomarker for chemotherapy sensitivity in advanced NSCLC patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Genotype , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , Tumor Suppressor Proteins/genetics , Adult , Aged , Alleles , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Disease Progression , Female , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Platinum/administration & dosage , Prognosis , Ribonucleoside Diphosphate Reductase , Risk Factors , Treatment Outcome , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...