Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr J ; 23(1): 98, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175065

ABSTRACT

BACKGROUND: Amino acids are crucial for nutrition and metabolism, regulating metabolic pathways and activities vital to organismal health and stability. Glycine and histidine act as potent antioxidants and anti-inflammatory agents; however, limited knowledge exists regarding the associations between these amino acids and hyperlipidemia and hypertension. The purpose of this study is to investigate the relationship between dietary glycine and histidine, and hyperlipidemia and hypertension. METHODS: This population-based cross-sectional study evaluated the influence of dietary glycine and histidine, as well as their combined effect, on hyperlipidemia and hypertension in Chinese adults participating in the Nutrition Health Atlas Project (NHAP). General characteristics were acquired using a verified Internet-based Dietary Questionnaire for the Chinese. Binary logistic regression, along with gender, age groups, and median energy intake subgroup analyses, was employed to investigate the associations between dietary glycine and histidine and hyperlipidemia and hypertension. A sensitivity analysis was conducted to assess the impact of excluding individuals who smoke and consume alcohol on the results. RESULTS: Based on the study's findings, 418 out of 1091 cases had hyperlipidemia, whereas 673 had hypertension. A significant inverse relationship was found between dietary glycine, histidine, and glycine + histidine and hyperlipidemia and hypertension. Compared with the 1st and 2nd tertiles, the multivariable-adjusted odd ratios (ORs) (95% confidence intervals) (CIs) of the 3rd tertile of dietary glycine for hyperlipidemia and hypertension were 0.64 (0.49-0.84) (p < 0.01) and 0.70 (0.56-0.88) (p < 0.001); histidine was 0.63 (0.49-0.82) (p < 0.01) and 0.80 (0.64-0.99) (p < 0.01); and glycine + histidine was 0.64 (0.49-0.83) (p < 0.01) and 0.74 (0.59-0.92) (p < 0.001), respectively. High glycine and high histidine (HGHH) intake were negatively associated with hyperlipidemia and hypertension OR (95% CIs) were: 0.71 (0.58-0.88) (p < 0.01) and 0.73 (0.61-0.87) (p < 0.01), respectively. CONCLUSIONS: Dietary glycine and histidine, as well as their HGHH group, revealed an inverse relationship with hyperlipidemia and hypertension. Further investigations are needed to validate these findings.


Subject(s)
Diet , Glycine , Histidine , Hyperlipidemias , Hypertension , Humans , Glycine/administration & dosage , Hypertension/diet therapy , Male , Female , Cross-Sectional Studies , Hyperlipidemias/diet therapy , Middle Aged , Adult , Diet/methods , Diet/statistics & numerical data , China , Aged , Logistic Models
2.
IEEE Trans Neural Netw Learn Syst ; 32(6): 2650-2662, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32706646

ABSTRACT

Although robust control has been studied for decades, the output-feedback robust control design is still challenging in the control field. This article proposes a new approach to address the output-feedback robust control for continuous-time uncertain systems. First, we transform the robust control problem into an optimal control problem of the nominal linear system with a constructive cost function, which allows simplifying the control design. Then, a modified algebraic Riccati equation (MARE) is constructed by further investigating the corresponding relationship with the state-feedback optimal control. To solve the derived MARE online, the vectorization operation and Kronecker's product are applied to reformulate the output Lyapunov function, and then, a new online data-driven learning method is suggested to learn its solution. Consequently, only the measurable system input and output are used to derive the solution of the MARE. In this case, the output-feedback robust control gain can be obtained without using the unknown system states. The control system stability and convergence of the derived solution are rigorously proved. Two simulation examples are provided to demonstrate the efficacy of the suggested methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...