Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters










Publication year range
1.
Thorac Cancer ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816940

ABSTRACT

BACKGROUND: Robotic-assisted thoracoscopic surgery (RATS) can achieve traditional clinical outcomes comparable to those of video-assisted thoracoscopic surgery (VATS). However, patient-reported outcomes (PROs) during the early period after RATS and VATS remain unclear. This study aimed to utilize longitudinal electronic PRO (ePRO) assessments to evaluate symptom burden and functional status between these approaches from patients' perspective. METHODS: This study comprised patients who underwent lobectomy via RATS or VATS for non-small cell lung cancer. We collected multiple-time-point PROs data from the prospective longitudinal study via an ePRO system. Symptom severity and function status were assessed using the perioperative symptom assessment for patients undergoing lung surgery and were analyzed between groups using linear mixed-effects models. RESULTS: Of the 164 patients, 42 underwent RATS and 122 underwent VATS. After propensity score matching (PSM), 42 RATS and 84 VATS exhibited similar baseline characteristics. During the 7-day postoperative period, participants underwent RATS reported milder pain (p = 0.014), coughing (p < 0.001), drowsiness (p = 0.001), and distress (p = 0.045) compared with those underwent VATS. Moreover, participants in RATS group showed less functional interference with walking (p < 0.001) and general activity (p < 0.001). RATS exhibited a shorter postoperative hospitalization (p = 0.021) but higher hospital cost (p < 0.001). Meanwhile, short-term clinical outcomes of operative time, dissected lymph node stations, chest tube drainage, and postoperative complication rates were comparable. CONCLUSION: PROs are important metrics for assessing patients' recovery after lobectomy. Compared with VATS, RATS may induce less symptom burden and better functional status for patients in the early postoperative period.

2.
Mar Pollut Bull ; 203: 116422, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749155

ABSTRACT

The COVID-19 pandemic has resulted in unprecedented plastic pollution from single-used personal protective equipment (PPE), especially face masks, in coastal and marine environments. The secondary pollutants, microplastics from face masks (mask MP), rise concern about their detrimental effects on marine organisms, terrestrial organisms and even human. Using a mouse model, oral exposure to mask MP at two doses, 0.1 and 1 mg MP/day for 21 days, caused no change in animal locomotion, total weight, or sperm counts, but caused damage to sperm motility with increased curvilinear velocity (VCL). The high-dose mask MP exposure caused a significant decrease in linearity (LIN) of sperm motility. Further testicular transcriptomic analysis revealed perturbed pathways related to spermatogenesis, oxidative stress, inflammation, metabolism and energy production. Collectively, our findings substantiate that microplastics from face masks yield adverse effects on mammalian reproductive capacity, highlighting the need for improved plastic waste management and development of environmentally friendly materials.


Subject(s)
Masks , Microplastics , Sperm Motility , Animals , Male , Microplastics/toxicity , Mice , Sperm Motility/drug effects , COVID-19 , Testis/drug effects
3.
CNS Neurosci Ther ; 30(5): e14739, 2024 05.
Article in English | MEDLINE | ID: mdl-38702935

ABSTRACT

AIMS: The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS: Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS: We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS: These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.


Subject(s)
Antipsychotic Agents , Aripiprazole , Disease Models, Animal , Dizocilpine Maleate , Hippocampus , Hyperkinesis , Schizophrenia , Animals , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Schizophrenia/drug therapy , Hippocampus/drug effects , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Dizocilpine Maleate/pharmacology , Mice , Hyperkinesis/drug therapy , Male , Locomotion/drug effects , Locomotion/physiology , Excitatory Amino Acid Antagonists/pharmacology , Mice, Inbred C57BL , Animals, Newborn , Neurons/drug effects , Theta Rhythm/drug effects , Theta Rhythm/physiology
4.
Toxicology ; 506: 153834, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38763425

ABSTRACT

INTRODUCTION: Growing concerns regarding the reproductive toxicity associated with daily life exposure to micro-/nano-plastics (abbreviated as MNPs) have become increasingly prevalent. In reality, MNPs exposure involves a heterogeneous mixture of MNPs of different sizes rather than a single size. METHODS: In this study, an oral exposure mouse model was used to evaluate the effects of MNPs of four size ranges: 25-30 nm, 1-5 µm, 20-27 µm, and 125-150 µm. Adult male C57BL/6 J mice were administered environmentally relevant concentrations of 0.1 mg MNPs/day for 21 days. After that, open field test and computer assisted sperm assessment (CASA) were conducted. Immunohistochemical analyses of organ and cell type localization of MNPs were evaluated. Testicular transcriptome analysis was carried out to understand the molecular mechanisms. RESULTS: Our result showed that MNPs of different size ranges all impaired sperm motility, with a decrease in progressive sperm motility, linearity and straight-line velocity of sperm movement. Alterations did not manifest in animal locomotion, body weight, or sperm count. Noteworthy effects were most pronounced in the smaller MNPs size ranges (25-30 nm and 1-5 µm). Linear regression analysis substantiated a negative correlation between the size of MNPs and sperm curvilinear activity. Immunohistochemical analysis unveiled the intrusions of 1-5 µm MNPs, but not 20-27 µm and 125-150 µm MNPs, into Leydig cells and testicular macrophages. Further testicular transcriptomic analysis revealed perturbations in pathways related to spermatogenesis, oxidative stress, and inflammation. Particularly within the 1-5 µm MNPs group, a heightened perturbation in pathways linked to spermatogenesis and oxidative stress was observed. CONCLUSIONS: Our data support the size-dependent impairment of MNPs on sperm functionality, underscoring the pressing need for apprehensions about and interventions against the escalation of environmental micro-/nano-plastics contamination. This urgency is especially pertinent to small-sized MNPs.

5.
Life Sci ; 348: 122687, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38718856

ABSTRACT

AIMS: Checkpoint blockade immunotherapy is a promising therapeutic modality that has revolutionized cancer treatment; however, the therapy is only effective on a fraction of patients due to the tumor environment. In tumor immunotherapy, the cGAS-STING pathway is a crucial intracellular immune response pathway. Therefore, this study aimed to develop an immunotherapy strategy based on the cGAS-STING pathway. MATERIALS AND METHODS: The physicochemical properties of the nanoparticles EM@REV@DOX were characterized by TEM, DLS, and WB. Subcutaneous LLC xenograft tumors were used to determine the biodistribution, antitumor efficacy, and immune response. Blood samples and tissues of interest were harvested for hematological analysis and H&E staining. SIGNIFICANCE: Overall, our designed nanovesicles provide a new perspective on tumor immunotherapy by ICD and cGAS-STING pathway, promoting DCs maturation, macrophage polarization, and activating T cells, offering a meaningful strategy for accelerating the clinical development of immunotherapy. KEY FINDINGS: EM@REV@DOX accumulated in the tumor site through EPR and homing targeting effect to release REV and DOX, resulting in DNA damage and finally activating the cGAS-STING pathway, thereby promoting DCs maturation, macrophage polarization, and activating T cells. Additionally, EM@REV@DOX increased the production of pro-inflammatory cytokines (e.g., TNF-α and IFN-ß). As a result, EM@REV@DOX was effective in treating tumor-bearing mice and prolonged their lifespans. When combined with αPD-L1, EM@REV@DOX significantly inhibited distant tumor growth, extended the survival of mice, and prevented long-term postoperative tumor metastasis, exhibiting great potential in antitumor immunotherapy.


Subject(s)
Immunotherapy , Membrane Proteins , Nanoparticles , Nucleotidyltransferases , Animals , Nucleotidyltransferases/metabolism , Mice , Membrane Proteins/metabolism , Immunotherapy/methods , Nanoparticles/chemistry , Humans , Signal Transduction , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Cell Line, Tumor , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Female , Xenograft Model Antitumor Assays , Immunogenic Cell Death/drug effects
6.
Ann Surg Oncol ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796589

ABSTRACT

INTRODUCTION: This study compared the surgical conversion rate and overall survival (OS) between induction chemotherapy (iC) and induction immunochemotherapy (iIC) for patients with initially unresectable esophageal squamous cell carcinoma (iuESCC). METHODS: In this multicenter, retrospective cohort study, patients from four high-volume institutions with unresectable diseases were included. The primary endpoints were the conversion surgery rate and OS. A multivariate Cox regression analysis was used to identify the independent significant prognostic factors associated with OS. The stabilized inverse probability of treatment weighting was applied to confirm the survival comparison between the iIC and iC cohorts. RESULTS: A total of 309 patients (150 in the iIC cohort and 159 in the iC cohort) were included. A significantly higher conversion surgical rate was observed in the iIC cohort (iIC vs. iC: 127/150, 84.7% vs. 79/159, 49.7%, P < 0.001). The pathological complete response rates were 22.0% and 5.1% in the iIC and the iC cohorts, respectively (P = 0.001). A significant difference in the OS was observed between the iIC (not reached) and iC cohorts (median 95% CI 36.3 [range 27.2-45.5]). The stabilized inverse probability of treatment weighting yielded similar results. Regimen (iIC vs. iC, HR 0.215, 95% CI 0.102-0.454, P < 0.001) and operation (yes vs. no, HR 0.262, 95% CI 0.161-0.427, P < 0.001) were the significant prognostic factors for OS. CONCLUSIONS: Immunochemotherapy plus conversion surgery in the induction setting may be a better treatment option to achieve high pathological responses and improve OS in iuESCC patients.

7.
Heliyon ; 10(7): e27768, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38690000

ABSTRACT

Background: Primary tumor resection is associated with survival benefits in patients with metastatic lung adenocarcinoma (mLUAD). However, there are no established methods to determine which individuals would benefit from surgery. Therefore, we developed a model to predict the patients who are likely to benefit from surgery in terms of survival. Methods: Data on patients with mLUAD were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. Depending on whether surgery was performed on the primary tumor, patients were categorized into two groups: cancer-directed surgery (CDS) and no-cancer-directed surgery (No-CDS). Propensity Score Matching (PSM) was utilized to address bias between the CDS and No-CDS groups. The prognostic impact of CDS was assessed using Kaplan-Meier analysis and Cox proportional hazard models. Subsequently, we constructed a nomogram to predict the potential for surgical benefits based on multivariable logistic regression analysis using preoperative factors. Results: A total of 89,039 eligible patients were identified, including 6.4% (5705) who underwent surgery. Following PSM, the CDS group demonstrated a significantly longer median overall survival (mOS) compared with the No-CDS group (23 [21-25] vs. 7 [7-8] months; P < 0.001). The nomogram showed robust performance in both the training and validation sets (area under the curve [AUC]: 0.698 and 0.717, respectively), and the calibration curves exhibited high consistency. The nomogram proved clinically valuable according to decision curve analysis (DCA). According to this nomogram, surgical patients were categorized into two groups: no-benefit candidates and benefit candidates groups. Compared with the no-benefit candidate group, the benefit candidate group was associated with longer survival (mOS: 25 vs. 6 months, P < 0.001). Furthermore, no difference in survival was observed between the no-benefit candidates and the no-surgery groups (mOS: 6 vs. 7 months, P = 0.9). Conclusions: A practical nomogram was developed to identify optimal CDS candidates among patients with mLUAD.

8.
Nanomaterials (Basel) ; 14(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786827

ABSTRACT

In this study, we investigate micrometer-sized NaYF4 crystals double-doped with Yb3+/Er3+ lanthanide ions, designed for temperature-sensing applications. In contrast to previous studies, which focused predominantly on the high-temperature regime, our investigation spans a comprehensive range of both high and ultralow temperatures. We explore the relationship between temperature and the upconversion luminescence (UCL) spectra in both frequency and time domains. Our findings highlight the strong dependence of these spectral characteristics of lanthanide-doped NaYF4 crystals on temperature. Furthermore, we introduce a dual-mode luminescence temperature measurement technique, leveraging the upconversion emission intensity ratio for both green and red emissions. This study also examines the correlation between temperature sensing, energy level disparities, and thermal coupling in Er3+ ions across various temperature scales. Our research contributes to advancing the understanding and application of lanthanide-doped materials, setting a foundation for future innovations in temperature sensing across diverse fields.

9.
Virol J ; 21(1): 100, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689312

ABSTRACT

BACKGROUND: In the aftermath of the COVID-19 pandemic, there has been a surge in human metapneumovirus (HMPV) transmission, surpassing pre-epidemic levels. We aim to elucidate the clinical and epidemiological characteristics of HMPV infections in the post-COVID-19 pandemic era. METHODS: In this retrospective single-center study, participants diagnosed with laboratory confirmed HMPV infection through Targeted Next Generation Sequencing were included. The study encompassed individuals admitted to Henan Children's Hospital between April 29 and June 5, 2023. Demographic information, clinical records, and laboratory indicators were analyzed. RESULTS: Between April 29 and June 5, 2023, 96 pediatric patients were identified as infected with HMPV with a median age of 33.5 months (interquartile range, 12 ~ 48 months). The majority (87.5%) of infected children were under 5 years old. Notably, severe cases were statistically younger. Predominant symptoms included fever (81.3%) and cough (92.7%), with wheezing more prevalent in the severe group (56% vs 21.1%). Coinfection with other viruses was observed in 43 patients, with Epstein-Barr virus (EBV) (15.6%) or human rhinovirus A (HRV type A) (12.5%) being the most common. Human respiratory syncytial virus (HRSV) coinfection rate was significantly higher in the severe group (20% vs 1.4%). Bacterial coinfection occurred in 74 patients, with Haemophilus influenzae (Hin) and Streptococcus pneumoniae (SNP) being the most prevalent (52.1% and 41.7%, respectively). Severe patients demonstrated evidence of multi-organ damage. Noteworthy alterations included lower concentration of IL-12p70, decreased lymphocytes percentages, and elevated B lymphocyte percentages in severe cases, with statistical significance. Moreover, most laboratory indicators exhibited significant changes approximately 4 to 5 days after onset. CONCLUSIONS: Our data systemically elucidated the clinical and epidemiological characteristics of pediatric patients with HMPV infection, which might be instructive to policy development for the prevention and control of HMPV infection and might provide important clues for future HMPV research endeavors.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Humans , China/epidemiology , Child, Preschool , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Retrospective Studies , Female , Male , Infant , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/virology , COVID-19/epidemiology , Child , Coinfection/epidemiology , Coinfection/virology , SARS-CoV-2/genetics
10.
Cell Rep ; 43(4): 113985, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38517890

ABSTRACT

Emerging evidence suggests a beneficial role of rhizobacteria in ameliorating plant disease resistance in an environment-friendly way. In this study, we characterize a rhizobacterium, Bacillus cereus NJ01, that enhances bacterial pathogen resistance in rice and Arabidopsis. Transcriptome analyses show that root inoculation of NJ01 induces the expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes in Arabidopsis leaves. Genetic evidence showed that EDS1, PAD4, and WRKY18 are required for B. cereus NJ01-induced bacterial resistance. An EDS1-PAD4 complex interacts with WRKY18 and enhances its DNA binding activity. WRKY18 directly binds to the W box in the promoter region of the SA biosynthesis gene ICS1 and ABA biosynthesis genes NCED3 and NCED5 and contributes to the NJ01-induced bacterial resistance. Taken together, our findings indicate a role of the EDS1/PAD4-WRKY18 complex in rhizobacteria-induced disease resistance.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Bacillus cereus , DNA-Binding Proteins , Plant Diseases , Salicylic Acid , Bacillus cereus/genetics , Abscisic Acid/metabolism , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Salicylic Acid/metabolism , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics , Oryza/microbiology , Oryza/immunology , Oryza/genetics , Disease Resistance/genetics , Disease Resistance/immunology , Plant Immunity
11.
J Hazard Mater ; 469: 134079, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38521042

ABSTRACT

The removal and recovery of radioactive Sr(II) from wastewater and seawater has been of great concern due to the negative environmental impacts of nuclear energy development and the potential risk of nuclear accidents. Herein, a facile molten salt synthesis strategy was developed to systematically investigated the reaction of different types of MXenes with nitrates. Among the products, K+ intercalated hierarchical titanate nanostructures (K-HTNs) obtained from the direct chemical transformation of multilayered Ti3C2Tx exhibited unique layered structures, good physicochemical properties, and outstanding adsorption performance for Sr(II). The maximum adsorption capacity of Sr(II) by K-HTNs reached 204 mg·g-1 at ambient temperature, and the good regeneration and reusability of the titanate was also demonstrated. K-HTNs showed preferential selectivity for Sr(II) in different environmental media containing competing ions, and the removal efficiency of Sr(II) in real seawater was as high as 93.3 %. The removal mechanism was elaborated to be the exchange of Sr2+ with K+/H+ in the interlayers of K-HTNs, and the adsorbed Sr(II) had a strong interaction with Ti-O- termination on the titanate surface. Benefiting from the merits of rapid and scalable synthesis and excellent adsorption performance, MXene-derived K-HTNs have broad application prospects for the purification of 90Sr-contaminated wastewater and seawater.

12.
ACS Appl Mater Interfaces ; 16(11): 14275-14287, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38447139

ABSTRACT

The flexible manipulation of underwater gas bubbles on solid substrates has attracted considerable research interest from scientists in the fields of water electrolysis, bubble microreactions, drug delivery, and heat transfer. Inspired by the oxygen-binding mechanisms of aquatic organisms, scientists have designed a series of interfacial materials for use in collecting gases, detecting and grading bubbles, and conducting microbubble reactions. Aerophilic surfaces are commonly used in underwater bubble manipulation platforms due to their excellent gas-trapping properties. However, during bubble transport, some of the bubbles are retained in the rough structure of the aerophilic surface and cause gas loss, which in the long run reduces the gas transport function. In addition, the aerophilic surface is prone to failure in high-humidity and high-pressure underwater environments. The lubricant-infused surface features an oil layer that remains stable on a rough substrate and is immiscible with water. Additionally, the bubbles are transported over the oil layer without causing losses other than those dissolved in water. These attributes make it more favorable than the aerophilic surface. Inspired by the unique properties of Nepenthes and cactus spines, we developed a patterned slippery surface [patterned lubricant-infused surface (PLIS)] through laser etching and ammonia etching that facilitates the coexistence of superaerophobic and aerophilic surfaces. The PLIS executes bubble capture utilizing a difference in wettability measuring 78°, transports bubbles through Laplace force and buoyancy, and regulates bubble release by restricting the contact area on the PLIS. The PLIS can be prepared rapidly and affordably in just about an hour, and its potential for large-scale production is high. Following tests for shear, acid and alkali resistance, and corrosion resistance, the PLIS exhibited impressive weathering resistance and appears to have potential for application in some extreme environments.

13.
J Sci Food Agric ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363126

ABSTRACT

BACKGROUND: Acidic lipases with high catalytic activities under acidic conditions have important application values in the food, feed and pharmaceutical industries. However, the availability of acidic lipases is still the main obstacle to their industrial applications. Although a novel acidic lipase Rasamsonia emersonii (LIPR) was heterologously expressed in Escherichia coli, the expression level was unsatisfactory. RESULTS: To achieve the high-efficiency expression and secretion of LIPR in Pichia pastoris GS115, the combinatorial optimization strategy was adopted including gene codon preference, signal peptide, molecular chaperone co-expression and disruption of vacuolar sorting receptor VPS10. The activity of the combinatorial optimization engineered strain in a shake flask reached 1480 U mL-1 , which was 8.13 times greater than the P. pastoris GS115 parental strain. After high-density fermentation in a 5-L bioreactor, the highest enzyme activity reached as high as 11 820 U mL-1 . LIPR showed the highest activity at 40 °C and pH 4.0 in the presence of Ca2+ ion. LIPR exhibited strong tolerance to methanol, indicating its potential application in biodiesel biosynthesis. Moreover, the gastrointestinal digestion simulation results demonstrated that LIPR was tolerant to pepsin and trypsin, but its activity was inhibited by sodium taurodeoxycholate. CONCLUSION: This study provided an effective approach for the high expression of acidic lipase LIPR. LIPR was more appropriate for lipid digestion in the stomach than in intestine according to the gastrointestinal digestion simulation results. © 2024 Society of Chemical Industry.

14.
J Control Release ; 368: 52-65, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368946

ABSTRACT

FOLFOX regimen, composed of folinic acid, 5-fluorouracil (5-FU) and oxaliplatin (OXP), has been used as clinical standard therapeutic regimen in treatments of colorectal cancer (CRC) and esophageal squamous cell carcinoma (ESCC). To further improve its therapeutic outcomes, FOLFOX was combined with anti-PD-1 antibody to form an advanced chemo-immune combination strategy, which has been proven more efficient in controlling cancer progression and prolonging patients' survival in various clinical trials. However, bad tumor accumulation, relative high toxicity, numerous treatment cycles with high fees and low compliance as well as drug resistance seriously limit the prognosis of FOLFOX regimen. The "all-in-one" formulations, which could precisely delivery multidrug regimen into tumor sites and cells, showed a promising application prospect for targeted drug delivery as well as reducing side effects. However, the design and preparation of the "all-in-one" formulation with high drug encapsulation efficiencies for all drugs was still challenging. Herein, a lipid core-shell nanoparticle codelivery platform was designed for simultaneous encapsulation of variant FOLFOX composed of miriplatin (MiPt), 5-Fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP), calcium folinate (CF) and PD-L1 siRNA (siPD-L1) with high efficiencies, and their synergistic anti-tumor mechanisms were studied, respectively. MiPt, a precursor of OXP, was validated capable of inducing efficient immunogenic cell death (ICD) in this work. Additionally, ICD-mediated release of damage associated molecular patterns functionalized synergistically with PD-L1 silence by siPD-L1 to overcome chemoresistance, reverse suppressive tumor microenvironment and recruit more CD8+ T cells. FdUMP, as the intracellular active form of 5-FU, could induce large amounts of reactive oxygen species to enhance the ICD. CF worked as the sensitizer of FdUMP. The enhanced long-term anti-tumor effect of the prepared "all-in-one" formulation compared to free drug regimen and other controls, was verified in heterotopic CRC mice models and ESCC mice models, providing new thoughts for researchers and showing a promising prospect of translation into clinical applications.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Colorectal Neoplasms , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Nanoparticles , Humans , Animals , Mice , Leucovorin/therapeutic use , B7-H1 Antigen , Colorectal Neoplasms/pathology , CD8-Positive T-Lymphocytes/pathology , Fluorodeoxyuridylate/therapeutic use , Fluorouracil/therapeutic use , Oxaliplatin , Lipids/therapeutic use , Cell Line, Tumor , Immunotherapy , Organoplatinum Compounds
15.
J Neurosci ; 44(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37945348

ABSTRACT

The auditory steady-state response (ASSR) is a cortical oscillation induced by trains of 40 Hz acoustic stimuli. While the ASSR has been widely used in clinic measurement, the underlying neural mechanism remains poorly understood. In this study, we investigated the contribution of different stages of auditory thalamocortical pathway-medial geniculate body (MGB), thalamic reticular nucleus (TRN), and auditory cortex (AC)-to the generation and regulation of 40 Hz ASSR in C57BL/6 mice of both sexes. We found that the neural response synchronizing to 40 Hz sound stimuli was most prominent in the GABAergic neurons in the granular layer of AC and the ventral division of MGB (MGBv), which were regulated by optogenetic manipulation of TRN neurons. Behavioral experiments confirmed that disrupting TRN activity has a detrimental effect on the ability of mice to discriminate 40 Hz sounds. These findings revealed a thalamocortical mechanism helpful to interpret the results of clinical ASSR examinations.Significance Statement Our study contributes to clarifying the thalamocortical mechanisms underlying the generation and regulation of the auditory steady-state response (ASSR), which is commonly used in both clinical and neuroscience research to assess the integrity of auditory function. Combining a series of electrophysiological and optogenetic experiments, we demonstrate that the generation of cortical ASSR is dependent on the lemniscal thalamocortical projections originating from the ventral division of medial geniculate body to the GABAergic interneurons in the granule layer of the auditory cortex. Furthermore, the thalamocortical process for ASSR is strictly regulated by the activity of thalamic reticular nucleus (TRN) neurons. Behavioral experiments confirmed that dysfunction of TRN would cause a disruption of mice's behavioral performance in the auditory discrimination task.


Subject(s)
Auditory Cortex , Wakefulness , Female , Male , Mice , Animals , Mice, Inbred C57BL , Thalamic Nuclei/physiology , Geniculate Bodies/physiology , Auditory Cortex/physiology , Acoustic Stimulation/methods , GABAergic Neurons/physiology
16.
Mol Neurobiol ; 61(3): 1433-1447, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37721689

ABSTRACT

Spinal cord injury (SCI) is a common clinical problem in orthopedics with a lack of effective treatments and drug targets. In the present study, we performed bioinformatic analysis of SCI datasets GSE464 and GSE45006 in the Gene Expression Omnibus (GEO) public database and experimentally validated CCL2 expression in an animal model of SCI. This was followed by stimulation of PC-12 cells using hydrogen peroxide to construct a cellular model of SCI. CCL2 expression was knocked down using small interfering RNA (si-CCL2), and PI3K signaling pathway inhibitors and activators were used to validate and observe the changes in downstream inflammation. Through data mining, we found that the inflammatory chemokine CCL2 and PI3K/Akt signaling pathways after SCI expression were significantly increased, and after peroxide stimulation of PC-12 cells with CCL2 knockdown, their downstream cellular inflammatory factor levels were decreased. The PI3K/Akt signaling pathway was blocked by PI3K inhibitors, and the downstream inflammatory response was suppressed. In contrast, when PI3K activators were used, the inflammatory response was enhanced, indicating that the CCL2-PI3K/Akt signaling pathway plays a key role in the regulation of the inflammatory response. This study revealed that the inflammatory chemokine CCL2 can regulate the inflammatory response of PC-12 cells through the PI3K/Akt signaling pathway, and blocking the expression of the inflammatory chemokine CCL2 may be a promising strategy for the treatment of secondary injury after SCI.


Subject(s)
Proto-Oncogene Proteins c-akt , Spinal Cord Injuries , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Chemokine CCL2/pharmacology , Signal Transduction , Spinal Cord Injuries/metabolism , Computational Biology , Spinal Cord/metabolism
17.
Cancer Immunol Immunother ; 72(12): 4249-4259, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37943341

ABSTRACT

Esophageal cancer (EC) is a deadly malignancy. Small extracellular vesicles (sEVs) with programmed death ligand 1 (sEV-PDL1) induce immune escape to promote tumor progression. Furthermore, the imbalance between circulating follicular helper T (Tfh) and circulating follicular regulatory T (Tfr) cells is related to the progression of many malignant tumors. However, the role of the EC-derived sEV-PDL1 in circulating Tfh/Tfr is unknown. Circulating Tfh and Tfr cells were detected by flow cytometry. sEVs were isolated through differential centrifugation and cultured for cell expansion assays. Naïve CD4+ T cells were isolated, stimulated, and cultured with sEVs to evaluate the frequencies, phenotypes, and functions of Tfh and Tfr cells. The proportion of circulating Tfh in patients with EC was lower than that in healthy donors (HDs), whereas that of circulating Tfr was higher. The EC group showed significantly lower circulating Tfh/Tfr and a higher level of sEV-PDL1 than HDs. Notably, sEV-PDL1 was negatively correlated with circulating Tfh/Tfr in the EC group. In vitro assays, sEV-PDL1 inhibited Tfh expansion, enhanced the cytotoxic T lymphocyte-associated antigen 4+ (CTLA4+) Tfh cell percentage, decreased the levels of interleukin (IL)-21 and interferon-γ, and increased IL-10. sEV-PDL1 promoted the expansion and immunosuppressive functions of circulating Tfr; the increased percentages of CTLA4+ Tfr and inducible T cell co-stimulator+ Tfr were accompanied with high IL-10. However, applying an anti-PDL1 antibody significantly reversed this. Our results suggest a novel mechanism of sEV-PDL1-mediated immunosuppression in EC. Inhibiting sEV-PDL1 to restore circulating Tfh/Tfr balance provides a novel therapeutic approach for EC.


Subject(s)
Esophageal Neoplasms , Extracellular Vesicles , Humans , T-Lymphocytes, Helper-Inducer , T Follicular Helper Cells , Interleukin-10 , CTLA-4 Antigen , B7-H1 Antigen , T-Lymphocytes, Regulatory , Immunosuppression Therapy
18.
Arch Biochem Biophys ; 748: 109784, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37816420

ABSTRACT

Bone is a preferred metastatic site of prostate cancer (PCa), and most patients with PCa metastases develop osteogenic bone metastasis, which manifests as disturbed bone structure and poor bone quality. However, the underlying mechanisms of PCa bone metastasis remain unclear. In recent years, increasing evidence has implicated extracellular vesicles, especially exosomes, in PCa bone metastasis. Exosomes are 30-150 nm in diameter, enclosing a cargo of biomolecules, such as DNA, RNA, and proteins. Exosomes play a functional role in intercellular communication, modulate the functions of recipient cells, and potentially modulate bone microenvironment changes, thereby influencing the development of PCa bone metastasis. This review summarizes the involvement of exosomes in the imbalance between bone resorption and formation, and establishing a pre-metastatic niche in bone marrow, as well as potential clinical applications of exosomes in therapeutic strategies for treating patients with advanced PCa with bone metastasis.


Subject(s)
Bone Neoplasms , Exosomes , Extracellular Vesicles , Prostatic Neoplasms , Male , Humans , Exosomes/metabolism , Prostatic Neoplasms/pathology , Bone Neoplasms/pathology , Cell Communication , Extracellular Vesicles/metabolism , Tumor Microenvironment , Neoplasm Metastasis
19.
Foods ; 12(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37628077

ABSTRACT

Rare sugars possess potential applications as low-calorie sweeteners, especially for anti-obesity and anti-diabetes. In this study, a fermentation biosystem based on the "DHAP-dependent aldolases strategy" was established for D-allulose and D-sorbose production from glycerol in endotoxin-free ClearColi BL21 (DE3). Several engineering strategies were adopted to enhance rare sugar production. Firstly, the combination of different plasmids for aldO, rhaD, and yqaB expression was optimized. Then, the artificially constructed ribosomal binding site (RBS) libraries of aldO, rhaD, and yqaB genes were assembled individually and combinatorially. In addition, a peroxidase was overexpressed to eliminate the damage or toxicity from hydrogen peroxide generated by alditol oxidase (AldO). Finally, stepwise improvements in rare sugar synthesis were elevated to 15.01 g/L with a high yield of 0.75 g/g glycerol in a 3 L fermenter. This research enables the effective production of rare sugars from raw glycerol in high yields.

20.
Biotechnol Lett ; 45(10): 1355-1364, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37486554

ABSTRACT

PURPOSE: In our previous study, we constructed a one-pot multi-enzyme system for rare ketoses synthesis based on L-rhamnulose-1-phosphate aldolase (RhaD) from accessible glycerol in vitro. To eliminate tedious purification of enzymes, a facile Escherichia coli whole-cell cascade platform was established in this study. METHODS: To enhance the conversion rate, the reaction conditions, substrate concentrations and expressions of related enzymes were extensively optimized. RESULTS: The biosynthetic route for the cascade synthesis of rare ketoses in whole cells was successfully constructed and three rare ketoses including D-allulose, D-sorbose and L-fructose were produced using glycerol and D/L-glyceraldehyde (GA). Under optimized conditions, the conversion rates of rare ketoses were 85.0% and 93.0% using D-GA and L-GA as the receptor, respectively. Furthermore, alditol oxidase (AldO) was introduced to the whole-cell system to generate D-GA from glycerol, and the total production yield of D-sorbose and D-allulose was 8.2 g l-1 only from the sole carbon source glycerol. CONCLUSION: This study demonstrates a feasible and cost-efficient method for rare sugars synthesis and can also be applied to the green synthesis of other value-added chemicals from glycerol.


Subject(s)
Ketoses , Sorbose , Sorbose/chemistry , Glycerol/metabolism , Glyceraldehyde/chemistry , Glyceraldehyde/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...