Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Angew Chem Int Ed Engl ; : e202405560, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787342

ABSTRACT

Radical-involved multicomponent difunctionalization of 1,3-dienes has recently emerged as a promising strategy for rapid synthesis of valuable allylic compounds in one-pot operation. However, the expansion of radical scope and enantiocontrol remain two major challenges. Herein, we describe an unprecedented photoinduced copper-catalyzed highly enantioselective three-component radical 1,2-azidooxygenation of 1,3-dienes with readily available azidobenziodazolone reagent and carboxylic acids. This mild protocol exhibits a broad substrate scope, high functional group tolerance, and exceptional control over chemo-, regio- and enantioselectivity, providing practical access to diverse valuable azidated chiral allylic esters. Mechanistic studies imply that the chiral copper complex is implicated as a bifunctional catalyst in both the photoredox catalyzed azidyl radical generation and enantioselective radical C-O cross-coupling.

2.
Adv Mater ; : e2400365, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752379

ABSTRACT

Deterministic integration of phase-pure Ruddlesden-Popper (RP) perovskites has great significance for realizing functional optoelectronic devices. However, precise fabrications of artificial perovskite heterostructures with pristine interfaces and rational design over electronic structure configurations remain a challenge. Here, the controllable synthesis of large-area ultrathin single-crystalline RP perovskite nanosheets and the deterministic fabrication of arbitrary 2D vertical perovskite heterostructures are reported. The 2D heterostructures exhibit intriguing dual-peak emission phenomenon and dual-band photoresponse characteristic. Importantly, the interlayer energy transfer behaviors from wide-bandgap component to narrow-bandgap component modulated by comprising quantum wells are thoroughly revealed. Functional nanoscale photodetectors are further constructed based on the 2D heterostructures. Moreover, by combining the modulated dual-band photoresponse characteristic with double-beam irradiation modes, and introducing an encryption algorithm mechanism, a light communication system with high security and reliability is achieved. This work can greatly promote the development of heterogeneous integration technologies of 2D perovskites, and could provide a competitive candidate for advanced integrated optoelectronics.

3.
Asian J Pharm Sci ; 19(2): 100900, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38590797

ABSTRACT

Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs; as novel solvents for improving the solubility of drugs in carriers; as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs; and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.

4.
Food Chem ; 446: 138683, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38428081

ABSTRACT

A commercial high-resolution MS database "TCM-PCDL" was innovatively introduced to automatically identify multi-components in 73 edible flowers rapidly and accurately by liquid chromatography-high resolution mass spectrometry, which can be time-consuming and labor-intensive in traditional manual method. The database encompasses over 2565 natural products with various energy levels. Unknown compounds can be identified through direct matching and scoring MS2 spectra with database. A total of 870 compounds were identified from 73 flowers, with polyphenols constituting up to 75%. Focusing on polyphenols, a high performance liquid chromatography (HPLC) method was developed to generate fingerprints from 510 batches, establishing an "HPLC database" that enabled accurate authentication using similarity scores and rankings. This method demonstrated an accuracy rate of 100% when applied to 30 unknown samples. For flowers prone to confusion, additional statistical analysis methods could be employed as aids in authentication. This study provides valuable insights for large-scale sample chemical profiling and authentication.


Subject(s)
Plant Extracts , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Polyphenols , Flowers
5.
J Sci Food Agric ; 104(7): 4342-4353, 2024 May.
Article in English | MEDLINE | ID: mdl-38328855

ABSTRACT

BACKGROUND: Non-nutritive sweeteners (NNS) are commonly used in sweetened foods and beverages; however their role in metabolic regulation is still not clear. In this experiment, we used guinea pigs as an animal model to study the effect of NNS on body growth and intestinal health by modifying gut microbiota and hypothalamus-related proteins. RESULTS: For a 28-day feeding experiment a total of 40 guinea pigs were randomly divided into four groups, one control (CN) group and three treatments, in which three NNS were added to the diet: rebaudioside A (RA, 330 mg kg-1), sodium saccharin (SS, 800 mg kg-1), and sucralose (TGS, 167 mg kg-1), respectively. The TGS group exhibited significantly reduced food consumption in comparison with the CN group (P < 0.05) whereas the RA group showed increased food consumption in comparison with the CN group (P < 0.05). Notably, Taste receptor type 1 subunit 2 (T1R2) expression in the hypothalamus was significantly higher in the RA group than in the CN group (P < 0.05). The mRNA expressions of appetite-stimulated genes arouti-related neuropeptide (AGRP), neuropeptide Y (NPY), and thyroid stimulating hormone (TSHB) were significantly higher than those in the CN group (P < 0.05) but mRNA expressions of appetite-suppressed genes tryptophan hydroxylase 2(THP2) were significantly lower in the TGS group (P < 0.05). Furthermore, NNS in the guinea pig diets (RA, SS, TGS) significantly increased the relative abundance of Muribaculaceae but decreased the relative abundance of Clostridia_vadin BB60 in comparison with the CN group (P < 0.05). We also found that dietary supplementation with RA also significantly altered the relative abundance of Lactobacillus. CONCLUSION: Our finding confirmed that dietary supplementation with RA and TGS affected body growth and intestinal health by modulating hypothalamic RNA profiles and ileum microbiota, suggesting that NNS should be included in guinea-pig feeding. © 2024 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Non-Nutritive Sweeteners , Guinea Pigs , Animals , Body Weight , Ileum , RNA, Messenger
6.
CNS Neurosci Ther ; 30(2): e14618, 2024 02.
Article in English | MEDLINE | ID: mdl-38334061

ABSTRACT

AIMS: We investigated the potential mechanisms underlying the therapeutic efficacy of electroacupuncture (EA) at the Shuigou (GV26) and Baihui (GV20) acupoints in the treatment of ischemic stroke. METHODS: We assessed the therapeutic effects of EA on MCAO mice through behavioral studies and TTC staining. Various techniques, such as RT-PCR, immunofluorescence, and Western blots, were employed to evaluate the activation and polarization of microglia/macrophages, and changes in the TRPV4 ion channel. We used the TRPV4 antagonist GSK2193874 (GSK219) to verify the involvement of TRPV4 in the therapeutic effects of EA. RESULTS: EA effectively improved neurological impairments and reduced cerebral infarction volume in MCAO mice. It suppressed activated microglia/macrophages and inhibited their polarization toward the M1 phenotype post-MCAO. EA also downregulated the expression of pro-inflammatory cytokines, including Tnf-α, Il-6, Il-1ß, and Ccl-2 mRNA. Furthermore, EA reduced the elevated expression of TRPV4 following MCAO. Treatment with the TRPV4 antagonist GSK219 mirrored the effects of EA in MCAO mice. Notably, the combination of EA and GSK219 did not demonstrate an additive or synergistic effect. CONCLUSION: EA may inhibit neuroinflammation and exhibit a protective effect against ischemic brain injury by suppressing TRPV4 and the subsequent M1 polarization of microglia/macrophages.


Subject(s)
Brain Ischemia , Electroacupuncture , Ischemic Stroke , Reperfusion Injury , Stroke , Animals , Mice , Brain Ischemia/therapy , Brain Ischemia/metabolism , Electroacupuncture/methods , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Neuroinflammatory Diseases , Reperfusion Injury/metabolism , Stroke/therapy , Stroke/metabolism , TRPV Cation Channels/genetics
7.
J Colloid Interface Sci ; 663: 103-110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38394815

ABSTRACT

As the drawbacks of antibiotics in treating bacterial infections emerged, physical methods such as near-infrared-activated (NIR-activated) bacterial killing, have attracted great interests for their advantages of no resistance, short action time and few side effects. In this manuscript, NIR-activated bacteria-killing performance of chiral copper sulphide nanoparticles (L-/d-CuS NPs) was investigated using linearly polarized light (LPL) and circularly polarized light (CPL) as illumination sources, respectively. Chiral CuS NPs showed enhanced NIR-activated bacteria-killing effect compared with achiral CuS NPs under the same conditions. Moreover, these chiral CuS NPs showed obvious chirality-related antibacterial effect: the bacterial killing was more efficient under CPL activation, and L- and d-CuS NPs had higher antibacterial efficiency under left circularly polarized light (LCPL) and right circularly polarized light (RCPL), respectively. The possible mechanism of bacteria-killing performance for chiral CuS NPs was discussed in detailed. Photothermal bacteria-killing tests of chiral CuS NPs "sealed" in polydimethylsiloxane (PDMS) demonstrated the individual influence of photothermal effect. These observations in this paper could provide ideas for the potential applications of chiral nanostructures with enhanced photothermal effect in efficient bacterial killing.


Subject(s)
Nanoparticles , Nanostructures , Nanoparticles/chemistry , Nanostructures/chemistry , Anti-Bacterial Agents/pharmacology , Copper/pharmacology , Copper/chemistry , Bacteria
8.
Aging Cell ; 23(4): e14092, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287696

ABSTRACT

Osteoarthritis (OA), a chronic degenerative joint disease, is highly prevalent among the aging population, and often leads to joint pain, disability, and a diminished quality of life. Although considerable research has been conducted, the precise molecular mechanisms propelling OA pathogenesis continue to be elusive, thereby impeding the development of effective therapeutics. Notably, recent studies have revealed subchondral bone lesions precede cartilage degeneration in the early stage of OA. This development is marked by escalated osteoclast-mediated bone resorption, subsequent imbalances in bone metabolism, accelerated bone turnover, and a decrease in bone volume, thereby contributing significantly to the pathological changes. While the role of aging hallmarks in OA has been extensively elucidated from the perspective of chondrocytes, their connection with osteoclasts is not yet fully understood. There is compelling evidence to suggest that age-related abnormalities such as epigenetic alterations, proteostasis network disruption, cellular senescence, and mitochondrial dysfunction, can stimulate osteoclast activity. This review intends to systematically discuss how aging hallmarks contribute to OA pathogenesis, placing particular emphasis on the age-induced shifts in osteoclast activity. It also aims to stimulate future studies probing into the pathological mechanisms and therapeutic approaches targeting osteoclasts in OA during aging.


Subject(s)
Bone Resorption , Cartilage, Articular , Osteoarthritis , Humans , Aged , Osteoclasts/metabolism , Quality of Life , Osteoarthritis/metabolism , Bone Resorption/metabolism , Aging , Cartilage, Articular/metabolism
9.
Colloids Surf B Biointerfaces ; 234: 113746, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199187

ABSTRACT

Ischemic stroke is a neurological disease that leads to brain damage and severe cognitive impairment. In this study, extracellular vesicles(Ev) derived from mouse hippocampal cells (HT22) were used as carriers, and adenosine (Ad) was encapsulated to construct Ev-Ad to target the damaged hippocampus. The results showed that, Ev-Ad had significant antioxidant effect and inhibited apoptosis. In vivo, Ev-Ad reduced cell death and reversed inflammation in hippocampus of ischemic mice, and improved long-term memory and learning impairment by regulating the expression of the A1 receptor and the A2A receptor in the CA1 region. Thus, the developmental approach based on natural carriers that encapsulating Ad not only successfully restored nerves after ischemic stroke, but also improved cognitive impairment in the later stage of ischemic stroke convalescence. The development and design of therapeutic drugs provides a new concept and method for the treatment of cognitive impairment in the convalescent phase after ischemic stroke.


Subject(s)
Extracellular Vesicles , Ischemic Stroke , Stroke , Animals , Mice , Adenosine/pharmacology , Stroke/drug therapy , Stroke/metabolism , Hippocampus , Extracellular Vesicles/metabolism , Cognition , Ischemic Stroke/metabolism
10.
Int J Pharm ; 649: 123673, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38056796

ABSTRACT

Ischemic heart disease (IHD) is a cardiac disorder in which myocardial damage occurs as a result of myocardial ischemia and hypoxia. Evidence suggests that oxidative stress and inflammatory responses are critical in the development of myocardial ischemia. Therefore, the combination of antioxidant and anti-inflammatory applications is an effective strategy to combat ischemic heart disease. In this paper, polyethylene glycol (PEG)-modified cationic liposomes were used as carriers to deliver apigenin (Apn) with small interfering RNA (siRNA) targeting the receptor for glycosylation end products (RAGE) (siRAGE) into cardiomyocytes to prevent myocardial ischemic injury through antioxidant and anti-inflammatory effects. Our results showed that we successfully prepared cationic PEG liposomes loaded with Apn and siRAGE (P-CLP-A/R) with normal appearance and morphology, particle size and Zeta potential, and good encapsulation rate, drug loading and in vitro release degree. In vitro, P-CLP-A/R was able to prevent oxidative stress injury in H9C2 cells, downregulate the expression of RAGE, reduce the secretion of cellular inflammatory factors and inhibit apoptosis through the RAGE/NF-κB pathway; In vivo, P-CLP-A/R was able to prevent arrhythmia and myocardial pathological injury, and reduce apoptosis and the area of necrotic myocardium in rats. In conclusion, P-CLP-A/R has a protective effect on myocardial ischemic injury and is expected to be a potential drug for the prevention of ischemic heart disease in the future.


Subject(s)
Myocardial Ischemia , Myocardial Reperfusion Injury , Rats , Animals , RNA, Small Interfering/genetics , Liposomes/pharmacology , Apigenin/pharmacology , Antioxidants/pharmacology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Ischemia/drug therapy , Myocardial Ischemia/prevention & control , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Apoptosis , Anti-Inflammatory Agents/pharmacology
11.
Int J Biol Macromol ; 255: 128311, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992927

ABSTRACT

The treatment of Parkinson's disease is a global medical challenge. α-Synuclein (α-Syn) is the causative protein in Parkinson's disease and is closely linked to its progression. Therefore, inhibiting the pathological aggregation of α-Syn and its neurotoxicity is essential for the treatment of Parkinson's disease. In this study, α-Syn and recombinant human HspB5-ACD structural domain protein (AHspB5) were produced using the BL21(DE3) E. coli prokaryotic expression system, and then the role and mechanism of AHspB5 in inhibiting the pathological aggregation of α-Syn and its neurotoxicity were investigated. As a result, we expressed α-Syn and AHspB5 proteins and characterised the proteins. In vitro experiments showed that AHspB5 could inhibit the formation of α-Syn oligomers and fibrils; in cellular experiments, AHspB5 could prevent α-Syn-induced neuronal cell dysfunction, oxidative stress damage and apoptosis, and its mechanism of action was related to the TH-DA pathway and mitochondria-dependent apoptotic pathway; in animal experiments, AHspB5 could inhibit behavioural abnormalities, oxidative stress damage and loss of dopaminergic neurons. In conclusion, this work is expected to elucidate the mechanism and biological effects of AHspB5 on the pathological aggregation of α-Syn, providing a new pathway for the treatment of Parkinson's disease and laying the foundation for recombinant AHspB5.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Escherichia coli/metabolism , Dopaminergic Neurons , Apoptosis , Protein Aggregation, Pathological/metabolism
12.
Adv Mater ; 36(13): e2310248, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38118456

ABSTRACT

Metal halide perovskite films have gained significant attention because of their remarkable optoelectronic performances. However, their poor stability upon the severe environment appears to be one of the main facets that impedes their further commercial applications. Herein, a method to improve the stability of flexible photodetectors under water and humidity environment without encapsulation is reported. The devices are fabricated using the physical vapor deposition method (Pulse Laser Deposition & Thermal Evaporation) under high-vacuum conditions. An amorphous organic Rubrene film with low molecular polarity and high elastic modulus serves as both a protective layer and hole transport layer. After immersed in water for 6000 min, the photoluminescence intensity attenuation of films only decreased by a maximum of 10%. The demonstrator device, based on Rubrene/CsPbBr3/ZnO heterojunction confirms that the strategy not only enhances device moisture and mechanical stability but also achieves high sensitivity in optoelectronic detection. In self-powered mode, it has a fast response time of 79.4 µs /207.6 µs and a responsivity 124 mA W-1. Additionally, the absence of encapsulation simplifies the fabrication of complex electrodes, making it suitable for various applications. This study highlights the potential use of amorphous organic films in improving the stability of perovskite-based flexible devices.

13.
Inflammation ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38055120

ABSTRACT

Due to the accumulation of reactive oxygen species (ROS) and heightened activity of osteoclasts, postmenopausal osteoporosis could cause severe pathological bone destruction. Protein disulfide isomerase (PDI), an endoplasmic prototypic thiol isomerase, plays a central role in affecting cellular redox state. To test whether suppression of PDI could inhibit osteoclastogenesis through cellular redox regulation, bioinformatics network analysis was performed on the causative genes, followed by biological validation on the osteoclastogenesis in vitro and ovariectomy (OVX) mice model in vivo. The analysis identified PDI as one of gene targets for postmenopausal osteoporosis, which was positively expressed during osteoclastogenesis. Therefore, PDI expression inhibitor and chaperone activity inhibitor were used to verify the effects of PDI inhibitors on osteoclastogenesis. Results demonstrated that PDI inhibitors could reduce osteoclast number and inhibit resorption function via suppression on osteoclast marker genes. The mechanisms behind the scenes were the PDI inhibitors-caused intracellular ROS reduction via enhancement of the antioxidant system. Micro-CT and histological results indicated PDI inhibitors could effectively alleviate or even prevent bone loss in OVX mice. In conclusion, our findings unveiled the suppressive effects of PDI inhibitors on osteoclastogenesis by reducing intracellular ROS, providing new therapeutic options for postmenopausal osteoporosis.

15.
Environ Sci Pollut Res Int ; 30(53): 114375-114390, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37861838

ABSTRACT

Using a dataset encompassing 228 cities in China spanning from 2005 to 2019, this study explores the nonlinear relationship between air quality and housing prices and devises a strategy that incorporates the instrumental variable and machine learning to address the endogeneity issue. Both traditional models and machine learning models find air pollution affects housing prices in a diminishing manner. The negative impact of air pollution on housing prices decreases when the degree of air pollution intensifies. Such a characteristic is more pronounced in Eastern China and cities with fewer land resource constraints and larger populations. Mechanism analysis also reveals that air pollution could affect residents' perceived air quality and the industrial structure, further contributing to the nonlinear relationship between air quality and housing prices. The further SHapley Additive exPlanations (SHAP) evaluates the importance of air quality in determining housing prices and finds that air quality's contribution outweighs educational and medical resources. The contribution of air quality also shows a distinct regional disparity and has become increasingly important in recent years. The findings refine the benefit assessment accuracy related to air quality improvement.


Subject(s)
Air Pollutants , Air Pollution , Housing , Air Pollution/analysis , Cities , China , Machine Learning , Air Pollutants/analysis
16.
Front Pharmacol ; 14: 1148445, 2023.
Article in English | MEDLINE | ID: mdl-37465524

ABSTRACT

Background: Psoriasis vulgaris (PV) is a longstanding, inflammatory, immune-responsive skin condition. Chinese herbal medicine injections (CHMIs) have been utilized for treating PV in Asian countries. This study aims to conduct a thorough systematic review and meta-analysis to comprehensively appraise the efficacy of CHMIs in treating PV. Methods: Seven databases were searched for randomized controlled trials that evaluated the effect of CHMIs in treating PV, ranging from 2004 to June 2022. The meta-analysis was undertaken based on outcome measures, treatment options, and treatment durations using Review Manager 5.4. The primary outcome measure of this study was a 60% or higher reduction in the Psoriasis Area and Severity Index score (PASI 60). A descriptive analysis was performed for the assessment of adverse events. Results: This systematic review incorporated 33 studies, comprising 3,059 participants. The main findings indicated significant differences based on the PASI 60 (RR = 1.30, 95% CI: 1.24 to 1.37, Z = 10.72, p < 0.00001), PASI 30 (RR = 1.25, 95% CI: 1.13 to 1.38, Z = 4.48, p < 0.00001), and PASI 20 (RR = 1.28, 95% CI: 1.13 to 1.45, Z = 3.82, p = 0.0001) outcome measures. Evaluating the treatment options, CHMIs in combination with monotherapies like narrowband ultraviolet B (NB-UVB) and the acitretin capsule (AC) showed a greater reduction in PASI 60 (RR = 1.33, 95% CI: 1.25 to 1.43, Z = 8.32, p < 0.00001). In terms of treatment duration, no significant difference was observed when the duration extended beyond 56 days. Furthermore, the results suggested that CHMIs might reduce the incidence of adverse events in the treatment of PV. Conclusion: This systematic review revealed preliminary clinical evidence supporting the use of CHMIs for treating PV, considering outcome measures, treatment options, and treatment durations. However, due to the low methodological quality and limited sample size of the included studies, there is an urgent need for high-quality, multi-center and larger-scale studies of CHMIs for PV to provide robust evidence for their clinical application. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=326531], identifier [CRD42022326531].

17.
Front Neurol ; 14: 1097623, 2023.
Article in English | MEDLINE | ID: mdl-37305740

ABSTRACT

Objective: Cardioembolic stroke (CE stroke, also known as cardiogenic cerebral embolism, CCE) has the highest recurrence rate and fatality rate among all subtypes of ischemic stroke, the pathogenesis of which was unclear. Autophagy plays an essential role in the development of CE stroke. We aim to identify the potential autophagy-related molecular markers of CE stroke and uncover the potential therapeutic targets through bioinformatics analysis. Methods: The mRNA expression profile dataset GSE58294 was obtained from the GEO database. The potential autophagy-related differentially expressed (DE) genes of CE stroke were screened by R software. Protein-protein interactions (PPIs), correlation analysis, and gene ontology (GO) enrichment analysis were applied to the autophagy-related DE genes. GSE66724, GSE41177, and GSE22255 were introduced for the verification of the autophagy-related DE genes in CE stroke, and the differences in values were re-calculated by Student's t-test. Results: A total of 41 autophagy-related DE genes (37 upregulated genes and four downregulated genes) were identified between 23 cardioembolic stroke patients (≤3 h, prior to treatment) and 23 healthy controls. The KEGG and GO enrichment analysis of autophagy-related DE genes indicated several enriched terms related to autophagy, apoptosis, and ER stress. The PPI results demonstrated the interactions between these autophagy-related genes. Moreover, several hub genes, especially for CE stroke, were identified and re-calculated by Student's t-test. Conclusion: We identified 41 potential autophagy-related genes associated with CE stroke through bioinformatics analysis. SERPINA1, WDFY3, ERN1, RHEB, and BCL2L1 were identified as the most significant DE genes that may affect the development of CE stroke by regulating autophagy. CXCR4 was identified as a hub gene of all types of strokes. ARNT, MAPK1, ATG12, ATG16L2, ATG2B, and BECN1 were identified as particular hub genes for CE stroke. These results may provide insight into the role of autophagy in CE stroke and contribute to the discovery of potential therapeutic targets for CE stroke treatment.

18.
Pharmaceutics ; 15(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37376029

ABSTRACT

Breast cancer has a high prevalence in the world and creates a substantial socio-economic impact. Polymer micelles used as nano-sized polymer therapeutics have shown great advantages in treating breast cancer. Here, we aim to develop a dual-targeted pH-sensitive hybrid polymer (HPPF) micelles for improving the stability, controlled-release ability and targeting ability of the breast cancer treatment options. The HPPF micelles were constructed using the hyaluronic acid modified polyhistidine (HA-PHis) and folic acid modified Plannick (PF127-FA), which were characterized via 1H NMR. The optimized mixing ratio (HA-PHis:PF127-FA) was 8:2 according to the change of particle size and zeta potential. The stability of HPPF micelles were enhanced with the higher zeta potential and lower critical micelle concentration compared with HA-PHis and PF127-FA. The drug release percents significantly increased from 45% to 90% with the decrease in pH, which illustrated that HPPF micelles were pH-sensitive owing to the protonation of PHis. The cytotoxicity, in vitro cellular uptake and in vivo fluorescence imaging experiments showed that HPPF micelles had the highest targeting ability utilizing FA and HA, compared with HA-PHis and PF127-FA. Thus, this study constructs an innovative nano-scaled drug delivery system, which provides a new strategy for the treatment of breast cancer.

19.
Psychol Res Behav Manag ; 16: 1181-1193, 2023.
Article in English | MEDLINE | ID: mdl-37082527

ABSTRACT

Purpose: This study aims to explore the relationship between the four-dimensional structured perceived organizational support (emotional support, instrumental support, supervisor support, and coworker support) and the turnover intention of pharmacists in primary healthcare institutions. The gender differences between perceived organizational support and turnover intention will also be examined. Methods: A cross-sectional study was conducted in primary healthcare institutions of 31 cities in China from 2 July to 1 September 2021. And the binary logistic regression model was employed for data analysis. Results: 937 valid questionnaires are allocated from pharmacists in primary healthcare institutions. The regression results indicated that emotional support (b=0.073, p<0.001) has a significant influence on pharmacists' turnover intention, and the effect of supervisor support (b=0.173, p=0.046) on pharmacists' turnover intention differs by gender. Conclusion: These findings offer suggestions for the management and stabilization of pharmacists in primary healthcare institutions. It is suggested that specific measures should be taken to increase pharmacists' perceived organizational support and reduce their turnover intention. At the same time, gender differences need to be taken into consideration by the managers when providing perceived organizational support to reduce their turnover intention through adaptive management.

20.
Molecules ; 28(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903498

ABSTRACT

Phthalocyanines are potentially promising photosensitizers (PSs) for photodynamic therapy (PDT), but the inherent defects such as aggregation-caused quenching effects and non-specific toxicity severely hinder their further application in PDT. Herein, we synthesized two zinc(II) phthalocyanines (PcSA and PcOA) monosubstituted with a sulphonate group in the alpha position with "O bridge" and "S bridge" as bonds and prepared a liposomal nanophotosensitizer (PcSA@Lip) by thin-film hydration method to regulate the aggregation of PcSA in the aqueous solution and enhance its tumor targeting ability. PcSA@Lip exhibited highly efficient production of superoxide radical (O2∙-) and singlet oxygen (1O2) in water under light irradiation, which were 2.6-fold and 15.4-fold higher than those of free PcSA, respectively. Furthermore, PcSA@Lip was able to accumulate selectively in tumors after intravenous injection with the fluorescence intensity ratio of tumors to livers was 4.1:1. The significant tumor inhibition effects resulted in a 98% tumor inhibition rate after PcSA@Lip was injected intravenously at an ultra-low PcSA@Lip dose (0.8 nmol g-1 PcSA) and light dose (30 J cm-2). Therefore, the liposomal PcSA@Lip is a prospective nanophotosensitizer possessing hybrid type I and type II photoreactions with efficient photodynamic anticancer effects.


Subject(s)
Photochemotherapy , Zinc , Prospective Studies , Photosensitizing Agents/chemistry , Isoindoles , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL
...