Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Phytomedicine ; 129: 155700, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38704914

ABSTRACT

BACKGROUND: Myoglobin (Mb) induced death of renal tubular epithelial cells (RTECs) is a major pathological factor in crush syndrome-related acute kidney injury (CS-AKI). It is unclear whether ferroptosis is involved and could be a target for treatment. PURPOSE: This study aimed to evaluate the potential therapeutic effects of combining the natural small molecule rosemarinic acid (RA) and the iron chelator deferasirox (Dfe) on CS-AKI through inhibition of ferroptosis. METHODS: Sequencing data were downloaded from the GEO database, and differential expression analysis was performed using the R software limma package. The CS-AKI mouse model was constructed by squeezing the bilateral thighs of mice for 16 h with 1.5 kg weight. TCMK1 and NRK-52E cells were induced with 200 µM Mb and then treated with RA combined with Dfe (Dfe + RA, both were 10 µM). Functional and pathological changes in mouse kidney were evaluated by glomerular filtration rate (GFR) and HE pathology. Immunofluorescence assay was used to detect Mb levels in kidney tissues. The expression levels of ACSL4, GPX4, Keap1, and Nrf2 were analyzed by WB. RESULTS: We found that AKI mice in the GSE44925 cohort highly expressed the ferroptosis markers ACSL4 and PTGS2. CS-AKI mice showed a rapid decrease in GFR, up-regulation of ACSL4 expression in kidney tissue, and down-regulation of GPX4 expression, indicating activation of the ferroptosis pathway. Mb was found to deposit in renal tubules, and it has been proven to cause ferroptosis in TCMK1 and NRK-52E cells in vitro. We found that Dfe had a strong iron ion scavenging effect and inhibited ACSL4 expression. RA could disrupt the interaction between Keap1 andNrf2, stabilize Nrf2, and promote its nuclear translocation, thereby exerting antioxidant effects. The combination of Dfe and RA effectively reversed Mb induced ferroptosis in RTECs. CONCLUSION: In conclusion, we found that RA combined with Dfe attenuated CS-AKI by inhibiting Mb-induced ferroptosis in RTECs via activating the Nrf2/Keap1 pathway.

2.
bioRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38659854

ABSTRACT

The human genome contains millions of retrotransposons, several of which could become active due to somatic mutations having phenotypic consequences, including disease. However, it is not thoroughly understood how nucleotide changes in retrotransposons affect their jumping activity. Here, we developed a novel massively parallel jumping assay (MPJA) that can test the jumping potential of thousands of transposons en masse. We generated nucleotide variant library of selected four Alu retrotransposons containing 165,087 different haplotypes and tested them for their jumping ability using MPJA. We found 66,821 unique jumping haplotypes, allowing us to pinpoint domains and variants vital for transposition. Mapping these variants to the Alu-RNA secondary structure revealed stem-loop features that contribute to jumping potential. Combined, our work provides a novel high-throughput assay that assesses the ability of retrotransposons to jump and identifies nucleotide changes that have the potential to reactivate them in the human genome.

3.
Appl Opt ; 63(7): 1815-1821, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437285

ABSTRACT

The telescope is vital for accurate gravitational wave detection in the TianQin project. It must meet criteria like a geometric tilt-to-length (TTL) coupling noise c o e f f i c i e n t≤0.02√2n m/µr a d and wavefront R M S≤λ/30. Analyzing the pupil aberration's impact on geometric TTL noise, we devised an optimization method using the chief ray spot diagram's standard deviation. Implementing this in Zemax with a ZPL macro, we designed an optical system meeting TianQin's requirements. The system has a maximum geometric TTL noise coefficient of 0.0250 nm/µrad over the science FOV and a wavefront RMS of 0.0111λ, confirming the method's feasibility.

4.
Appl Opt ; 63(6): 1488-1494, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38437360

ABSTRACT

The optical path length stability of the off-axis four-reflection telescope is one of the key technical indicators for the TianQin gravitational wave detection system. In the MHz observation band, the telescope must exhibit an optical path length stability of 0.4p m/H z 1/2. As a feasible solution, the optical path length stability measurement of the off-axis four-reflection telescope based on the Pound-Drever-Hall (PDH) technique imposes stringent requirements on the alignment of the off-axis resonant cavity (ORC). Taking the off-axis two-reflection prototype as the research object, we propose a Monte Carlo analysis-based method for ORC alignment precision analysis. By considering misalignment as an intermediate function, we establish a relationship between the coupling efficiency of the ORC and the wavefront aberration of the telescope. The research results show that by considering the combined effects of multiple misalignment couplings of the primary and secondary mirrors, when the detected telescope wavefront aberration is better than 0.068λ (λ=1064n m) with a probability of 98%, the ORC coupling efficiency can achieve greater than 40% with a probability of 97.13%, which can be used as the main reference indicator for system misalignment analysis. This method simplifies the alignment difficulty of the target under test and can provide alignment reference for subsequent resonant cavities with internal off-axis telescopes.

5.
Food Chem X ; 21: 101141, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38304045

ABSTRACT

Aroma is a key criterion in evaluating aromatic coconut water. A comparison regarding key aroma compounds and sensory correlations was made between Thailand Aromatic Green Dwarf (THD) and Cocos nucifera L. cv. Wenye No. 4 coconut water using E-nose and GC × GC-O-TOF-MS combined with chemometrics. Twenty-one volatile components of coconut water were identified by GC × GC-O-TOF-MS, and 5 key aroma compounds were analyzed by relative odor activity value and aroma extract dilution analysis. Moreover, the combination of the E-nose with orthogonal partial least squares was highly effective in discriminating between the two coconut water samples and screened the key sensors responsible for this differentiation. Additionally, the correlation between volatile compounds and sensory properties was established using partial least squares. The key aroma compounds of coconut water exhibited positive correlations with the corresponding sensory properties.

6.
Appl Opt ; 62(34): 9175-9182, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38108756

ABSTRACT

Stray light is a key issue that must be considered in the TianQin telescope. To solve the problem of a long simulation time and the inability of the simulation results to be fed back to guide the optical design, we propose a fast estimation method for stray light based on the FOV with high accuracy. Compared to other models, the error between our model and the software simulation results is smaller, within one order of magnitude. Based on this method, we obtain the optical component target of the TianQin telescope and propose an optimization method to reduce stray light, which can be verified by analyzing the optimized optical design.

7.
ACS Photonics ; 10(10): 3748-3754, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37869559

ABSTRACT

Integrated photonic platforms have proliferated in recent years, each demonstrating its unique strengths and shortcomings. Given the processing incompatibilities of different platforms, a formidable challenge in the field of integrated photonics still remains for combining the strengths of different optical materials in one hybrid integrated platform. Silicon carbide is a material of great interest because of its high refractive index, strong second- and third-order nonlinearities, and broad transparency window in the visible and near-infrared range. However, integrating silicon carbide (SiC) has been difficult, and current approaches rely on transfer bonding techniques that are time-consuming, expensive, and lacking precision in layer thickness. Here, we demonstrate high-index amorphous silicon carbide (a-SiC) films deposited at 150 °C and verify the high performance of the platform by fabricating standard photonic waveguides and ring resonators. The intrinsic quality factors of single-mode ring resonators were in the range of Qint = (4.7-5.7) × 105 corresponding to optical losses between 0.78 and 1.06 dB/cm. We then demonstrate the potential of this platform for future heterogeneous integration with ultralow-loss thin SiN and LiNbO3 platforms.

8.
Cell Death Discov ; 9(1): 280, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528068

ABSTRACT

Crush injury (CI) is a common disease in earthquake and traffic accidents. It refers to long-term compression that induces ischemia and hypoxia injury of skeletal muscle rich parts, leading to rupture of muscle cells and release of contents into the blood circulation. Crush syndrome (CS) is the systemic manifestation of severe, traumatic muscle injury. CI rescue faces a dilemma. Ischemic reperfusion due to decompression is a double-edged sword for the injured. Death often occurs when the injured are glad to be rescued. Programmed cell death (PCD) predominates in muscle CI or ischemia-reperfusion injury. However, the function and mechanism of pyroptosis and apoptosis in the pathogenesis of skeletal muscle injury in CI remain elusive. Here, we identified that pyroptosis and apoptosis occur independently of each other and are regulated differently in the injured mice's skeletal muscle of CI. While in vitro model, we found that glucose-deprived ischemic myoblast cells could occur pyroptosis. However, the cell damage degree was reduced if the oxygen was further deprived. Then, we confirmed that delayed step-by-step decompression of CI mice could significantly reduce skeletal muscle injury by substantially inhibiting NLRP3/Casp-1/GSDMD pyroptosis pathway but not altering the Casp-3/PARP apoptosis pathway. Moreover, pyroptotic inhibitor DSF therapy alone, or the combination of delayed step-by-step decompression and pyroptotic inhibitor therapy, significantly alleviated muscle injury of CI mice. The new physical stress relief and drug intervention method proposed in this study put forward new ideas and directions for rescuing patients with CI, even CS-associated acute kidney injury (CS-AKI).

9.
Metabolites ; 13(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37623830

ABSTRACT

Dendrobium officinale (D. officinale) is a precious medicinal species of Dendrobium Orchidaceae, and the product obtained by hot processing is called "Fengdou". At present, the research on the processing quality of D. officinale mainly focuses on the chemical composition indicators such as polysaccharides and flavonoids content. However, the changes in metabolites during D. officinale processing are still unclear. In this study, the process was divided into two stages and three important conditions including fresh stems, semiproducts and "Fengdou" products. To investigate the effect of processing on metabolites of D. officinale in different processing stages, an approach of combining metabolomics with network pharmacology and molecular docking was employed. Through UPLC-MS/MS analysis, a total of 628 metabolites were detected, and 109 of them were identified as differential metabolites (VIP ≥ 1, |log2 (FC)| ≥ 1). Next, the differential metabolites were analyzed using the network pharmacology method, resulting in the selection of 29 differential metabolites as they have a potential pharmacological activity. Combining seven diseases, 14 key metabolites and nine important targets were screened by constructing a metabolite-target-disease network. The results showed that seven metabolites with potential anticoagulant, hypoglycemic and tumor-inhibiting activities increased in relative abundance in the "Fengdou" product. Molecular docking results indicated that seven metabolites may act on five important targets. In general, processing can increase the content of some active metabolites of D. officinale and improve its medicinal quality to a certain extent.

10.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445774

ABSTRACT

Repetitive low-level blast (rLLB) exposure is a potential risk factor for the health of soldiers or workers who are exposed to it as an occupational characteristic. Alveolar macrophages (AMs) are susceptible to external blast waves and produce pro-inflammatory or anti-inflammatory effects. However, the effect of rLLB exposure on AMs is still unclear. Here, we generated rLLB waves through a miniature manual Reddy-tube and explored their effects on MH-S cell morphology, phenotype transformation, oxidative stress status, and apoptosis by immunofluorescence, real-time quantitative PCR (qPCR), western blotting (WB) and flow cytometry. Ipatasertib (GDC-0068) or PDTC was used to verify the role of the Akt/NF-κB signaling pathway in these processes. Results showed that rLLB treatment could cause morphological irregularities and cytoskeletal disorders in MH-S cells and promote their polarization to the M1 phenotype by increasing iNOS, CD86 and IL-6 expression. The molecular mechanism is through the Akt/NF-κB signaling pathway. Moreover, we found reactive oxygen species (ROS) burst, Ca2+ accumulation, mitochondrial membrane potential reduction, and early apoptosis of MH-S cells. Taken together, our findings suggest rLLB exposure may cause M1 polarization and early apoptosis of AMs. Fortunately, it is blocked by specific inhibitors GDC-0068 or PDTC. This study provides a new treatment strategy for preventing and alleviating health damage in the occupational population caused by rLLB exposure.


Subject(s)
Macrophages, Alveolar , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Macrophages, Alveolar/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
11.
Opt Express ; 31(8): 13279-13290, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157468

ABSTRACT

The temperature sensor is the core part of the temperature measurement instrument, and its performance directly determines the temperature measurement accuracy. Photonic crystal fiber (PCF) is a new type of temperature sensor with extremely high potential. In this paper, we propose a high-performance, structurally simple, liquid-filled PCF temperature sensor, which is based on a SMF-PCF-SMF (single mode fiber, SMF) sandwich structure. By adjusting the structural parameters of the the PCF, it is possible to obtain optical properties that are superior to those of ordinary optical fibers. This allows for more obvious responsive changes of the fiber transmission mode under small external temperature changes. By optimizing the basic structure parameters, a new PCF structure with a central air hole is designed, and its temperature sensitivity is -0.04696 nm/°C. When filling the air holes of PCFs with temperature-sensitive liquid materials, the response of the optical field against the temperature fluctuations can be effectively enhanced. The Chloroform solution is used to selectively infiltrate the resulting PCF owing to its large thermo-optical coefficient. After comparing various filling schemes, the calculation results show that the highest temperature sensitivity of -15.8 nm/°C is finally realized. The designed PCF sensor has a simple structure, high-temperature sensitivity, and good linearity showing great application potential.

12.
Mol Psychiatry ; 28(7): 3121-3132, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37198259

ABSTRACT

Genome-wide association studies (GWAS) of Alzheimer's disease are predominantly carried out in European ancestry individuals despite the known variation in genetic architecture and disease prevalence across global populations. We leveraged published GWAS summary statistics from European, East Asian, and African American populations, and an additional GWAS from a Caribbean Hispanic population using previously reported genotype data to perform the largest multi-ancestry GWAS meta-analysis of Alzheimer's disease and related dementias to date. This method allowed us to identify two independent novel disease-associated loci on chromosome 3. We also leveraged diverse haplotype structures to fine-map nine loci with a posterior probability >0.8 and globally assessed the heterogeneity of known risk factors across populations. Additionally, we compared the generalizability of multi-ancestry- and single-ancestry-derived polygenic risk scores in a three-way admixed Colombian population. Our findings highlight the importance of multi-ancestry representation in uncovering and understanding putative factors that contribute to risk of Alzheimer's disease and related dementias.


Subject(s)
Alzheimer Disease , Genetic Predisposition to Disease , Humans , Alzheimer Disease/ethnology , Alzheimer Disease/genetics , Black or African American/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Genotype , Polymorphism, Single Nucleotide/genetics , East Asian People/genetics , European People/genetics , Caribbean People/genetics , Hispanic or Latino/genetics , South American People/genetics
13.
Cell Rep ; 42(5): 112447, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37141099

ABSTRACT

Parkinson's disease-causing leucine-rich repeat kinase 2 (LRRK2) mutations lead to varying degrees of Rab GTPase hyperphosphorylation. Puzzlingly, LRRK2 GTPase-inactivating mutations-which do not affect intrinsic kinase activity-lead to higher levels of cellular Rab phosphorylation than kinase-activating mutations. Here, we investigate whether mutation-dependent differences in LRRK2 cellular localization could explain this discrepancy. We discover that blocking endosomal maturation leads to the rapid formation of mutant LRRK2+ endosomes on which LRRK2 phosphorylates substrate Rabs. LRRK2+ endosomes are maintained through positive feedback, which mutually reinforces membrane localization of LRRK2 and phosphorylated Rab substrates. Furthermore, across a panel of mutants, cells expressing GTPase-inactivating mutants form strikingly more LRRK2+ endosomes than cells expressing kinase-activating mutants, resulting in higher total cellular levels of phosphorylated Rabs. Our study suggests that the increased probability that LRRK2 GTPase-inactivating mutants are retained on intracellular membranes compared to kinase-activating mutants leads to higher substrate phosphorylation.


Subject(s)
Protein Serine-Threonine Kinases , rab GTP-Binding Proteins , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Mutation/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
14.
Curr Biol ; 33(10): 1967-1981.e8, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37119817

ABSTRACT

Cytoplasmic stress granules (SGs) are phase-separated membrane-less organelles that form in response to various stress stimuli. SGs are mainly composed of non-canonical stalled 48S preinitiation complexes. In addition, many other proteins also accumulate into SGs, but the list is still incomplete. SG assembly suppresses apoptosis and promotes cell survival under stress. Furthermore, hyperformation of SGs is frequently observed in various human cancers and accelerates tumor development and progression by reducing stress-induced damage of cancer cells. Therefore, they are of clinical importance. However, the precise mechanism underlying SG-mediated inhibition of apoptosis remains ill-defined. Here, using a proximity-labeling proteomic approach, we comprehensively analyzed SG-resident proteins and identified the executioner caspases, caspase-3 and -7, as SG components. We demonstrate that accumulation of caspase-3/7 into SGs is mediated by evolutionarily conserved amino acid residues within their large catalytic domains and inhibits caspase activities and consequent apoptosis induced by various stresses. Expression of an SG-localization-deficient caspase-3 mutant in cells largely counteracted the anti-apoptotic effect of SGs, whereas enforced relocalization of the caspase-3 mutant to SGs restored it. Thus, SG-mediated sequestration of executioner caspases is a mechanism underlying the broad cytoprotective function of SGs. Furthermore, using a mouse xenograft tumor model, we show that this mechanism prevents cancer cells from apoptosis in tumor tissues, thereby promoting cancer progression. Our results reveal the functional crosstalk between SG-mediated cell survival and caspase-mediated cell death signaling pathways and delineate a molecular mechanism that dictates cell-fate decisions under stress and promotes tumorigenesis.


Subject(s)
Caspases , Proteomics , Humans , Caspase 3/metabolism , Caspase 3/pharmacology , Caspases/metabolism , Caspases/pharmacology , Stress Granules , Cytoplasmic Granules/metabolism , Apoptosis , Stress, Physiological
15.
J Acoust Soc Am ; 153(3): 1506, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37002101

ABSTRACT

Performing reproducible vessel source level (SL) measurements is complicated by seabed reflections in shallow water. In deep water, with a hydrophone far from the seabed, it is straightforward to estimate propagation loss (PL) and convert sound pressure level (SPL) into SL using the method codified in the international standard ISO 17208-2 [International Organization for Standardization (ISO), Geneva, Switzerland (2019)]. Estimating PL is more difficult in shallow water because of the way that sound reflects from the seabed such that multiple propagation paths contribute to SPL. Obtaining reproducible SL measurements in shallow water requires straightforward and robust methods to estimate PL. From May to July 2021, a field experiment evaluated different methods of measuring vessel SL in shallow water. The same vessels were measured many times in water depths of 30, 70, and 180 m. In total, 12 079 SL measurements were obtained from 1880 vessel transits and 16 hydrophones, distributed across 3 moored vertical line arrays and 2 moored horizontal line arrays. The experiment confirmed that it is possible to obtain reproducible vessel SL estimates in shallow water comparable to within ±2.5 dB of ISO-compliant measurements in deep water and repeatable to within ±1.5 dB.

16.
J Agric Food Chem ; 71(1): 920-933, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36534960

ABSTRACT

The development of new green fungicides is an effective way to solve the resistance of agricultural pathogens and plays an important role in promoting high-quality and sustainable development of modern agriculture. In this project, a series of aryloxy-, arylthio-, and arylamino-containing acethydrazide derivatives were designed, synthesized, and characterized by 1H nuclear magnetic resonance (NMR), 13C NMR, and high-resolution mass spectrometry (HRMS). The fungicidal bioassays indicated that some compounds showed excellent and broad-spectrum fungicidal activity, and the structure-activity relationship was discussed. The in vivo fungicidal activity demonstrated that compounds C4 and D8 exhibited good preventative effects against Fusarium graminearum infecting wheat leaves, of which the preventative activity of compound D8 was almost equal to that of the positive agents. Transmission electron microscopy (TEM) observation revealed that the plasma membrane in the C4-treated F. graminearum hyphal cells was severely contracted and separated with the cell wall, coupling with the visible lysosomes and the disappeared cytoplasm and organelles, which may be the reasons for the shriveled and even ruptured hyphae observed by scanning electron microscopy (SEM). Subsequently, transcriptomics and metabolomics were performed to further elucidate the fungicidal mechanism. The regulatory networks of differential genes and metabolites in plasma membrane-related sphingolipid metabolism, linoleic acid metabolism, α-linoleic acid metabolism, and arachidonic acid metabolism were constructed and elaborated. Additionally, preliminary investigation of seeding growth suggested that compounds C4 and D8 may have different degrees of influence on the growth indicators of wheat seedlings; however, this effect may be negligible as the plant grows.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Linoleic Acid , Plant Diseases/prevention & control , Structure-Activity Relationship , Magnetic Resonance Spectroscopy
17.
Opt Express ; 30(13): 22820-22829, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-36224973

ABSTRACT

In this paper, we proposed a double-layer all-dielectric grating. Under the premise of ensuring the strength of the resonance peak, the upper SiO2 grating layer suppresses the tendency of high-order dipole resonance excitation and improves the transmittance at the non-resonant position (T > 99%). The distribution of chromaticity coordinates on the CIE 1931 chromaticity diagram also proves that suppressing side peaks can effectively increase the saturation of structural colors, which is essential for a high precision imaging system. The cyclic displacement current excites the magnetic dipole resonance, which causes the magnetic field to be confined in the high refractive index material HfO2 grating layer. By adjusting the duty cycle of the grating structure, a reflection spectrum with low full width half maximum (FWHM) (∼2 nm) and high-quality factor Q (∼424.5 nm) can be obtained. And the spectral intensity is more sensitive to the polarization angle. This work is of great significance to the development of sensors, display imaging and other fields. At the same time, the material of the grating filter meets the requirements of high damage threshold of the high-power laser system, and its high-power laser application potential is inestimable.

18.
Opt Express ; 30(5): 7737-7749, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299529

ABSTRACT

In this paper, we propose a new type of metal-insulator-metal (MIM) hybrid cavity compound grating micro-structure array, which can achieve dual narrowband super-absorption in the near-infrared window. The thin plasmonic microstructure effectively modulates coupling and hybridization effects between surface plasmon polaritons of different transmission resonance cavities to form designable dual narrowband resonance states to achieve near-infrared operation proving manipulation of the optical characteristics in the near-infrared light field. Furthermore, we conduct an in-depth theoretical exploration of the structure's unique properties, such as its high-quality factor, low noise, super-absorption, precise control, and the physical mechanism of its excellent performance in ambient refractive index sensing and detection. This study provides developmental insights for the miniaturization, easy modulation, and multi-function development of surface plasmon superabsorbers while broadening their application in near-infrared environment refractive index detection. The proposed microstructure is also suitable for integration with optical elements.

19.
J Insect Sci ; 22(2)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35303105

ABSTRACT

Bradysia odoriphaga Yang and Zhang (Diptera: Sciaridae), the Chinese chive root maggot, is a destructive pest of Allium vegetables and flowers that causes severe losses in northern China. Novel biological control technologies are needed for controlling this pest. We identified a new entomopathogenic fungus isolated from infected B. odoriphaga larvae and evaluated the susceptibility of the biological stages of B. odoriphaga and the effects of temperature on fungus growth and pathogenicity. Based on morphological characteristics and molecular phylogeny, the fungus was identified as Mucor hiemalis BO-1 (Mucorales: Mucorales). This fungus had the strongest virulence to B. odoriphaga larvae followed by eggs and pupae, while B. odoriphaga adults were not susceptible. A temperature range of 18-28°C was optimum for the growth and sporulation of M. hiemalis BO-1 and virulence to B. odoriphaga larvae. At 3 and 5 d after inoculation with 105 spores/ml at 23°C, the survival rates were 24.8% and 4.8% (2nd instar larvae), respectively, and 49.6% and 12.8% (4th instar larvae), respectively. The potted plant trials confirmed that M. hiemalis BO-1 exerted excellent control efficiency against B. odoriphaga larvae, and the control exceeded 80% within 5 d when the spore concentration applied exceeded 107 spores/ml. In conclusion, these findings supported the hypotheses that this fungus could serve as an effective control agent against B. odoriphaga larvae and is worth being further tested to determine its full potential as a biocontrol agent.


Subject(s)
Diptera , Insecticides , Mucorales , Animals , Insecticides/pharmacology , Larva , Mucor , Ovum , Virulence
20.
Cell Death Discov ; 8(1): 90, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35228524

ABSTRACT

Crush syndrome (CS) is a life-threatening illness in traffic accidents and earthquakes. Crush syndrome-induced acute kidney injury (CS-AKI) is considered to be mainly due to myoglobin (Mb) circulation and deposition after skeletal muscle ruptures and releases. Macrophages are the primary immune cells that fight foreign substances and play critical roles in regulating the body's natural immune response. However, what effect does myoglobin have on macrophages and the mechanisms involved in the CS-AKI remain unclear. This study aims to look into how myoglobin affects macrophages of the CS-AKI model. C57BL/6 mice were used to construct the CS-AKI model by digital crush platform. Biochemical analysis and renal histology confirmed the successful establishment of the CS-AKI mouse model. Ferrous myoglobin was used to treat Raw264.7 macrophages to mimic the CS-AKI cell model in vitro. The macrophage polarization toward M1 type and activation of RIG-I as myoglobin sensor were verified by real-time quantitative PCR (qPCR), Western blotting (WB), and immunofluorescence (IF). Macrophage pyroptosis was observed under light microscopy. The interaction between RIG-I and caspase1 was subsequently explored by co-immunoprecipitation (Co-IP) and IF. Small interfering RNA (siRIG-I) and pyroptosis inhibitor dimethyl fumarate (DMF) were used to verify the role of macrophage polarization and pyroptosis in CS-AKI. In the kidney tissue of CS-AKI mice, macrophage infiltration and M1 type were found. We also detected that in the cell model of CS-AKI in vitro, ferrous myoglobin treatment promoted macrophages polarization to M1. Meanwhile, we observed pyroptosis, and myoglobin activated the RIG-I/Caspase1/GSDMD signaling pathway. In addition, pyroptosis inhibitor DMF not only alleviated kidney injury of CS-AKI mice but also inhibited macrophage polarization to M1 phenotype and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway. Our research found that myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI.

SELECTION OF CITATIONS
SEARCH DETAIL
...