Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 14: 848919, 2022.
Article in English | MEDLINE | ID: mdl-35462688

ABSTRACT

Pantothenate kinase-associated neurodegeneration (PKAN) is a rare genetic disorder caused by mutations in the mitochondrial pantothenate kinase 2 (PANK2) gene and displays an inherited autosomal recessive pattern. In this study, we identified eight PANK2 mutations, including three novel mutations (c.1103A > G/p.D368G, c.1696C > G/p.L566V, and c.1470delC/p.R490fs494X), in seven unrelated families with PKAN. All the patients showed an eye-of-the-tiger sign on the MRI, six of seven patients had dystonia, and two of seven patients had Parkinsonism. Biallelic mutations of PANK2 decreased PANK2 protein expression and reduced mitochondrial membrane potential in human embryonic kidney (HEK) 293T cells. The biallelic mutations from patients with early-onset PKAN, a severity phenotype, showed decreased mitochondrial membrane potential more than that from late-onset patients. We systematically reviewed all the reported patients with PKAN with PANK2 mutations. The results indicated that the early-onset patients carried a significantly higher frequency of biallelic loss-of-function (LoF) mutations compared to late-onset patients. In general, patients with LoF mutations showed more severe phenotypes, including earlier onset age and loss of gait. Although there was no significant difference in the frequency of biallelic missense mutations between the early-onset and late-onset patients, we found that patients with missense mutations in the mitochondrial trafficking domain (transit peptide/mitochondrial domain) of PANK2 exhibited the earliest onset age when compared to patients with mutations in the other two domains. Taken together, this study reports three novel mutations and indicates a correlation between the phenotype and mitochondrial dysfunction. This provides new insight for evaluating the clinical severity of patients based on the degree of mitochondrial dysfunction and suggests genetic counseling not just generalized identification of mutated PANK2 in clinics.

2.
Mol Brain ; 13(1): 76, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32398021

ABSTRACT

Mutations in SLC6A1, encoding γ-aminobutyric acid (GABA) transporter 1 (GAT-1), have been recently associated with a spectrum of epilepsy syndromes, intellectual disability and autism in clinic. However, the pathophysiology of the gene mutations is far from clear. Here we report a novel SLC6A1 missense mutation in a patient with epilepsy and autism spectrum disorder and characterized the molecular defects of the mutant GAT-1, from transporter protein trafficking to GABA uptake function in heterologous cells and neurons. The heterozygous missense mutation (c1081C to A (P361T)) in SLC6A1 was identified by exome sequencing. We have thoroughly characterized the molecular pathophysiology underlying the clinical phenotypes. We performed EEG recordings and autism diagnostic interview. The patient had neurodevelopmental delay, absence epilepsy, generalized epilepsy, and 2.5-3 Hz generalized spike and slow waves on EEG recordings. The impact of the mutation on GAT-1 function and trafficking was evaluated by 3H GABA uptake, structural simulation with machine learning tools, live cell confocal microscopy and protein expression in mouse neurons and nonneuronal cells. We demonstrated that the GAT-1(P361T) mutation destabilizes the global protein conformation and reduces total protein expression. The mutant transporter protein was localized intracellularly inside the endoplasmic reticulum (ER) with a pattern of expression very similar to the cells treated with tunicamycin, an ER stress inducer. Radioactive 3H-labeled GABA uptake assay indicated the mutation reduced the function of the mutant GAT-1(P361T), to a level that is similar to the cells treated with GAT-1 inhibitors. In summary, this mutation destabilizes the mutant transporter protein, which results in retention of the mutant protein inside cells and reduction of total transporter expression, likely via excessive endoplasmic reticulum associated degradation. This thus likely causes reduced functional transporter number on the cell surface, which then could cause the observed reduced GABA uptake function. Consequently, malfunctioning GABA signaling may cause altered neurodevelopment and neurotransmission, such as enhanced tonic inhibition and altered cell proliferation in vivo. The pathophysiology due to severely impaired GAT-1 function may give rise to a wide spectrum of neurodevelopmental phenotypes including autism and epilepsy.


Subject(s)
Autistic Disorder/metabolism , Endoplasmic Reticulum/metabolism , Epilepsy/metabolism , GABA Plasma Membrane Transport Proteins/blood , gamma-Aminobutyric Acid/metabolism , Amino Acid Sequence , Animals , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Cell Line , Child , Electroencephalography , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/genetics , Epilepsy/genetics , Epilepsy/physiopathology , Epilepsy, Absence/genetics , Epilepsy, Absence/physiopathology , Epilepsy, Generalized/genetics , Epilepsy, Generalized/physiopathology , Female , GABA Plasma Membrane Transport Proteins/chemistry , GABA Plasma Membrane Transport Proteins/genetics , Humans , Machine Learning , Mice , Mutation, Missense , Neurodevelopmental Disorders/genetics , Neurons/metabolism , Pedigree , Phylogeny , Protein Conformation , Protein Stability , Protein Transport , Tunicamycin/pharmacology , Exome Sequencing
3.
BMC Complement Altern Med ; 19(1): 283, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31653214

ABSTRACT

BACKGROUND: A potato protein hydrolysate, APPH is a potential anti-obesity diet ingredient. Since, obesity leads to deterioration of liver function and associated liver diseases, in this study the effect of APPH on high fat diet (HFD) associated liver damages was investigated. METHODS: Six week old male hamsters were randomly separated to six groups (n = 8) as control, HFD (HFD fed obese), L-APPH (HFD + 15 mg/kg/day of APPH), M-APPH (HFD + 30 mg/kg/day), H-APPH (HFD + 75 mg/kg/day of APPH) and PB (HFD + 500 mg/kg/day of probucol). HFD fed hamsters were administered with APPH 50 days through oral gavage. The animals were euthanized and the number of apoptotic nuclei in liver tissue was determined by TUNEL staining and the extent of interstitial fibrosis was determined by Masson's trichrome staining. Modulation in the molecular events associated with apoptosis and fibrosis were elucidated from the western blotting analysis of the total protein extracts. RESULTS: Hamsters fed with high fat diet showed symptoms of liver damage as measured from serum markers like alanine aminotransferase and aspartate aminotransferase levels. However a 50 day long supplementation of APPH effectively ameliorated the effects of HFD. HFD also modulated the expression of survival and apoptosis proteins in the hamster liver. Further the HFD groups showed elevated levels of fibrosis markers in liver. The increase in fibrosis and apoptosis was correlated with the increase in the levels of phosphorylated extracellular signal-regulated kinases (pERK1/2) revealing a potential role of ERK in the HFD mediated liver damage. However APPH treatment reduced the effect of HFD on the apoptosis and fibrosis markers considerably and provided hepato-protection. CONCLUSION: APPH can therefore be considered as an efficient therapeutic agent to ameliorate high fat diet related liver damages.


Subject(s)
Caspase 3/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Obesity/diet therapy , Plant Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Solanum tuberosum/metabolism , Animals , Apoptosis , Caspase 3/genetics , Cricetinae , Diet, High-Fat/adverse effects , Fibrosis/diet therapy , Fibrosis/genetics , Fibrosis/metabolism , Fibrosis/physiopathology , Humans , Liver/cytology , Liver/metabolism , Liver/pathology , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Mesocricetus , Obesity/genetics , Obesity/metabolism , Obesity/physiopathology , Plant Proteins/chemistry , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Proto-Oncogene Proteins c-akt/genetics , Solanum tuberosum/chemistry
4.
J Am Chem Soc ; 138(43): 14186-14189, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27726348

ABSTRACT

Bubbling O2 into a THF solution of CoII(BDPP) (1) at -90 °C generates an O2 adduct, Co(BDPP)(O2) (3). The resonance Raman and EPR investigations reveal that 3 contains a low spin cobalt(III) ion bound to a superoxo ligand. Significantly, at -90 °C, 3 can react with 2,2,6,6-tetramethyl-1-hydroxypiperidine (TEMPOH) to form a structurally characterized cobalt(III)-hydroperoxo complex, CoIII(BDPP)(OOH) (4) and TEMPO•. Our findings show that cobalt(III)-superoxo species are capable of performing hydrogen atom abstraction processes. Such a stepwise O2-activating process helps to rationalize cobalt-catalyzed aerobic oxidations and sheds light on the possible mechanism of action for Co-bleomycin.

SELECTION OF CITATIONS
SEARCH DETAIL
...