Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 144: 107998, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34808503

ABSTRACT

Alkaline phosphatase (ALP) activity is a diagnostic indicator for a variety of clinical diseases. In this study, an electrochemical method for detecting ALP activity through activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) was developed. Specifically, 3-mercaptopropionic (MPA) was firstly fixed on the electrode through sulfur-gold bonding. Subsequently, α-bromophenylacetic acid (BPAA) as initiator was attached to MPA through the recognized carboxylate-Zr4+-phosphate chemistry. Finally, in the existence of ALP, L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS) was hydrolyzed to produce ascorbic acid (AA) which participated in the ARGET ATRP reaction, grafting polymer containing plenty of ferrocene electroactive probes on the surface of electrode. Under optimal experimental conditions, this method had a linear scope of 20-200 mU mL-1, and a limit of detection (LOD) of 1.64 mU mL-1. In addition, the proposed method had good selectivity as well as anti-interference capability, with satisfactory results in inhibition rate and human serum experiments. By merits of good analytical performance, easy operation, and low cost, such a method for ALP activity detection has promising applications in ALP-related disease detection and inhibitor screening.


Subject(s)
Polymerization
2.
Talanta ; 233: 122531, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215034

ABSTRACT

Exosomes, as a biomarker with enhancing tumor invasion and spread, play an essential role for lung cancer diagnosis, therapy, and prognosis. In this work, a novel electrochemical sensor was fabricated for detecting exosomes secreted by lung cancer cells based on polysaccharide-initiated ring-opening polymerization (ROP) and click polymerization. First, MPA formed a self-assembled monolayer on the gold electrode surface, and then anti-EGFR was immobilized on the electrode surface by amide bond. Subsequently, a lot of phosphate groups were introduced by the specific recognition between anti-EGFR and exosomes, then sodium alginate grafted Glycidyl propargyl ether (SA-g-GPE) prepared via ROP was attached to the exosomes through PO43-Zr4+-COOH coordination bond. After that, click polymerization was initiated by alkyne groups on the SA-g-GPE polymerization chain to realize highly sensitive detection of A549 exosomes. Under the optimum conditions, the fabricated sensor showed a good linear relationship between the logarithm of exosomes concentration and peak current in the range of 5 × 103 - 5 × 109 particles/mL, and the limit of detection (LOD) was as low as 1.49 × 102 particles/mL. In addition, this method had the advantages of high specificity, anti-interference, high sensitivity, simplicity, rapidity and green economy, which proposed a novel avenue for the detection of exosomes, and also had potential applications in early cancer diagnosis and biomedicine.


Subject(s)
Biosensing Techniques , Exosomes , Electrochemical Techniques , Gold , Limit of Detection , Polymerization , Polysaccharides
SELECTION OF CITATIONS
SEARCH DETAIL
...