Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Leukoc Biol ; 105(5): 983-998, 2019 05.
Article in English | MEDLINE | ID: mdl-30645008

ABSTRACT

Estrogens demonstrate biological activity in numerous organ systems, including the immune system, and exert their effects through estrogen receptors (ER) of two types: intracellular ERα and ERß that activate transcriptional factors and membrane G protein-coupled ER GPER. The latter is capable to mediate fast activation of cytosolic signaling pathways, influencing transcriptional events in response to estrogens. Tamoxifen (TAM), widely used in chemotherapy of ERα-positive breast cancer, is considered as an ERα antagonist and GPER agonist. TAM was shown to possess "off-target" cytotoxicity, not related to ER in various tumor types. The present work was designed to study biological effects of TAM on the glucocorticoid (GC)-resistant cell line Jurkat, derived from acute lymphoblastic leukemia of T lineage (T-ALL). We have shown that T-ALL cell lines, in contrast to healthy T cells, express only GPER, but not ERα or ERß. TAM compromised mitochondrial function and reduced the viability and proliferation of Jurkat cells. Additionally, TAM induced autophagy in a GPER-dependent manner. Gene expression profiling revealed the up-regulation of autophagy-related gene ATG5. Interestingly, TAM sensitized Jurkat cells to dexamethasone (DEX) treatment, which may be related to its capacity to cause autophagy. We suggest that TAM-based adjuvant therapy may represent a novel strategy in T-ALL patients handling.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Autophagy/drug effects , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Gene Expression Regulation, Neoplastic , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Tamoxifen/pharmacology , Autophagy/genetics , Autophagy-Related Protein 5/agonists , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dexamethasone/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/antagonists & inhibitors , Estrogen Receptor beta/metabolism , Gene Expression Profiling , Humans , Jurkat Cells , Lymphocyte Activation/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Primary Cell Culture , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
2.
Front Physiol ; 9: 499, 2018.
Article in English | MEDLINE | ID: mdl-29867547

ABSTRACT

Activation of resting T cells relies on sustained Ca2+ influx across the plasma membrane, which in turn depends on the functional expression of potassium channels, whose activity repolarizes the membrane potential. Depending on the T-cells subset, upon activation the expression of Ca2+- or voltage-activated K+ channels, KCa or Kv, is up-regulated. In this study, by means of patch-clamp technique in the whole cell mode, we have studied in detail the characteristics of Kv and KCa currents in resting and activated human T cells, the only well explored human T-leukemic cell line Jurkat, and two additional human leukemic T cell lines, CEM and MOLT-3. Voltage dependence of activation and inactivation of Kv1.3 current were shifted up to by 15 mV to more negative potentials upon a prolonged incubation in the whole cell mode and displayed little difference at a stable state in all cell lines but CEM, where the activation curve was biphasic, with a high and low potential components. In Jurkat, KCa currents were dominated by apamine-sensitive KCa2.2 channels, whereas only KCa3.1 current was detected in healthy T and leukemic CEM and MOLT-3 cells. Despite a high proliferation potential of Jurkat cells, Kv and KCa currents were unexpectedly small, more than 10-fold lesser as compared to activated healthy human T cells, CEM and MOLT-3, which displayed characteristic Kv1.3high:KCa3.1high phenotype. Our results suggest that Jurkat cells represent perhaps a singular case and call for more extensive studies on primary leukemic T cell lines as well as a verification of the therapeutic potential of specific KCa3.1 blockers to combat acute lymphoblastic T leukemias.

3.
Front Pharmacol ; 7: 290, 2016.
Article in English | MEDLINE | ID: mdl-27630569

ABSTRACT

Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca(2+) signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.

SELECTION OF CITATIONS
SEARCH DETAIL
...