Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 646
Filter
1.
Environ Pollut ; 358: 124497, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964645

ABSTRACT

Beryllium-containing sludge (BCS) is a byproduct of the physicochemical treatment of beryllium smelting wastewater. The pollutant element beryllium within BCS is highly unstable and extremely toxic, characterized by its small ionic radius and low charge density, resulting in a high risk of leaching and migration. This study is the first to investigate the leaching behavior, influencing mechanisms, and kinetic processes of beryllium in BCS under various environmental conditions. The results indicate that, under national standard conditions, beryllium exhibits a rapid leaching phase within the first 5 h, which then stabilizes after 10 h, with the total leached content significantly exceeding the leaching toxicity identification standards. Under mildly acidic (pH ≤ 5) or highly alkaline (pH = 14) conditions, beryllium demonstrates pronounced leaching and migration behaviors. Notably, in acidic conditions, the leaching rate exceeds 80% within 5 h. Combining the treatment process of beryllium-containing wastewater with analytical methods such as SEM, XPS, ToF-SIMS, and FTIR, it is revealed that due to the heterogeneous nature of BCS, the particle aggregates dissociate over time under acidic conditions. The particle surfaces become increasingly rough, leading to dissolution and the emergence of more reactive sites, resulting in a high proportion of beryllium leaching. Under these conditions, the gradual reaction of Be(OH)2 in BCS to form soluble Be2+ and its hydrolytic complexes is identified as the primary mechanism for extensive beryllium migration. The process encounters minimal diffusion resistance and is classified as reaction-controlled. In acidic conditions with pH = 4, the leaching rate of beryllium significantly increases with rising temperature. The leaching kinetics equation is [(1-x)-0.44]=e(18.26-53050RT)·t, with an apparent activation energy of 53.05 kJ mol-1.

2.
Cancer Manag Res ; 16: 711-730, 2024.
Article in English | MEDLINE | ID: mdl-38952353

ABSTRACT

Purpose: Low-grade gliomas (LGG) are common brain tumors with high mortality rates. Cancer cell invasion is a significant factor in tumor metastasis. Novel biomarkers are urgently needed to predict LGG prognosis effectively. Methods: The data for LGG were obtained from the Bioinformatics database. A consensus clustering analysis was performed to identify molecular subtypes linked with invasion in LGG. Differential expression analysis was performed to identify differentially expressed genes (DEGs) between the identified clusters. Enrichment analyses were then conducted to explore the function for DEGs. Prognostic signatures were placed, and their predictive power was assessed. Furthermore, the invasion-related prognostic signature was validated using the CGGA dataset. Subsequently, clinical specimens were procured in order to validate the expression levels of the distinct genes examined in this research, and to further explore the impact of these genes on the glioma cell line LN229 and HS-683. Results: Two invasion-related molecular subtypes of LGG were identified, and we sifted 163 DEGs between them. The enrichment analyses indicated that DEGs are mainly related to pattern specification process. Subsequently, 10 signature genes (IGF2BP2, SRY, CHI3L1, IGF2BP3, MEOX2, ABCC3, HOXC4, OTP, METTL7B, and EMILIN3) were sifted out to construct a risk model. Besides, the survival (OS) in the high-risk group was lower. The performance of the risk model was verified. Furthermore, a highly reliable nomogram was generated. Cellular experiments revealed the ability to promote cell viability, value-addedness, migratory ability, invasive ability, and colony-forming ability of the glioma cell line LN229 and HS-683. The qRT-PCR analysis of clinical glioma samples showed that these 10 genes were expressed at higher levels in high-grade gliomas than in low-grade gliomas, suggesting that these genes are associated with poor prognosis of gliomas. Conclusion: Our study sifted out ten invasion-related biomarkers of LGG, providing a reference for treatments and prognostic prediction in LGG.

3.
Food Chem X ; 23: 101528, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38947340

ABSTRACT

Differences in main nutritional components in relation to biomarkers of metabolites in purple rice grains at different fillings stages have not been determined previously. This study measured the contents of amino acids, several nutritional indicators, and mineral elements in purple rice grains at five stages following the filling stage. The results revealed that the amino acid, ascorbic acid, total sugar, carotenoid, vitamin B9, cyanidin-3-O-glucoside, peonidin 3-glucoside and seven minerals were highest in the final stage of grain filling. Citric acid, L-isoleucine, trigonelline, and L-glutamate are key metabolites in the metabolic pathway and exhibit strong correlations with various nutritional indicators. Hence, this research preliminarily suggested that trigonelline, L-isoleucine, L-glutamate, and citric acid could be potential biomarkers of nutritional components in purple rice grains during various postfilling stages.

4.
Angew Chem Int Ed Engl ; : e202407757, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978264

ABSTRACT

On the basis of a novel ynol-diene cyclization developed as a rapid access to tropone unit, the first divergent strategy to 17-nor-cephalotane diterpenoids has been successfully established. Combining with a bioinspired stereoselective dual hydrogenation, the divergent total synthesis of (+)-3-deoxyfortalpinoid F, (+)-harringtonolide, (-)-fortalpinoids M/N/P, and analog (-)-20-deoxocephinoid P have been achieved in 14-17 linear longest steps starting from commercially available materials.

5.
Anal Chem ; 96(26): 10827-10834, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38885015

ABSTRACT

Kidney diseases have become an important global health concern due to their high incidence, inefficient diagnosis, and poor prognosis. Devising direct methods, especially imaging means, to assess renal function is the key for better understanding the mechanisms of various kidney diseases and subsequent development of effective treatment. Herein, we developed a fluorinated ferrous chelate-based sensitive probe, 1,7-DO2A-Fe(II)-F18 (Probe 1), for 19F magnetic resonance imaging (MRI). This highly fluorinated probe (containing 18 chemically equivalent 19F atoms with a fluorine content at 35 wt %) achieves a 15-time enhancement in signal intensity compared with the fluorine-containing ligand alone due to the appropriately regulated 19F relaxation times by the ferrous ion, which significantly increases imaging sensitivity and reduces acquisition time. Owing to its high aqueous solubility, biostability, and biocompatibility, this probe could be rapidly cleared by kidneys, which provides a means for monitoring renal dysfunction via 19F MRI. With this probe, we accomplish in vivo imaging of the impaired renal dysfunction caused by various kidney diseases including acute kidney injury, unilateral ureteral obstruction, and renal fibrosis at different stages. Our study illustrates the promising potential of Probe 1 for in vivo real-time visualization of kidney dysfunction, which is beneficial for the study, diagnosis, and even stratification of different kidney diseases. Furthermore, the design strategy of our probe is inspiring for the development of more high-performance 19F MRI probes for monitoring various biological processes.


Subject(s)
Halogenation , Animals , Mice , Molecular Probes/chemistry , Kidney/diagnostic imaging , Kidney/pathology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Ferrous Compounds/chemistry , Magnetic Resonance Imaging , Kidney Diseases/diagnostic imaging , Fluorine-19 Magnetic Resonance Imaging/methods , Fluorine/chemistry
6.
Nat Neurosci ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914829

ABSTRACT

Large-scale neural population recordings with single-cell resolution across the primate brain remain challenging. Here we introduce the Neuroscroll probe that isolates single neuronal activities simultaneously from 1,024 densely spaced channels that are flexibly distributed across the shank of the probe. The Neuroscroll probe length is easily tunable for individual probes from 10 mm to 90 mm, covering the brain size of non-human primates and humans, and the probes remain intact and functional after repeated bending deformations. The Neuroscroll probes provided reliable recordings from large neural populations with high chronic stability up to 105 weeks in rats. Recording with each Neuroscroll probe yielded hundreds of well-isolated single units simultaneously from multiple brain regions distributed across the entire depth of the rhesus macaque brain. With the thousand simultaneously recorded channels, unprecedented probe length, excellent mechanical stability and flexible recording site distribution, the Neuroscroll probes enable a wide range of new experimental paradigms in system neuroscience studies with great versatility.

7.
Article in English | MEDLINE | ID: mdl-38889020

ABSTRACT

Since the rapid progress in multimedia and sensor technologies, multiview clustering (MVC) has become a prominent research area within machine learning and data mining, experiencing significant advancements over recent decades. MVC is distinguished from single-view clustering by its ability to integrate complementary information from multiple distinct data perspectives and enhance clustering performance. However, the efficacy of MVC methods is predicated on the availability of complete views for all samples-an assumption that frequently fails in practical scenarios where data views are often incomplete. To surmount this challenge, various approaches to incomplete MVC (IMVC) have been proposed, with deep neural networks emerging as a favored technique for their representation learning ability. Despite their promise, previous methods commonly adopt sample-level (e.g., features) or affinity-level (e.g., graphs) guidance, neglecting the discriminative label-level guidance (i.e., pseudo-labels). In this work, we propose a novel deep IMVC method termed pseudo-label propagation for deep IMVC (PLP-IMVC), which integrates high-quality pseudo-labels from the complete subset of incomplete data with deep label propagation networks to obtain improved clustering results. In particular, we first design a local model (PLP-L) that leverages pseudo-labels to their fullest extent. Then, we propose a global model (PLP-G) that exploits manifold regularization to mitigate the label noises, promote view-level information fusion, and learn discriminative unified representations. Experimental results across eight public benchmark datasets and three evaluation metrics prove our method's efficacy, demonstrating superior performance compared to 18 advanced baseline methods.

8.
Hortic Res ; 11(6): uhae117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38919553

ABSTRACT

To date, there has been no high-quality sequence for genomes of the East Asian grape species, hindering biological and breeding efforts to improve grape cultivars. This study presents ~522 Mb of the Vitis amurensis (Va) genome sequence containing 27 635 coding genes. Phylogenetic analysis indicated that Vitis riparia (Vr) may have first split from the other two species, Va and Vitis vinifera (Vv). Divergent numbers of duplicated genes reserved among grapes suggests that the core eudicot-common hexaploidy (ECH) and the subsequent genome instability still play a non-negligible role in species divergence and biological innovation. Prominent accumulation of sequence variants might have improved cold resistance in Va, resulting in a more robust network of regulatory cold resistance genes, explaining why it is extremely cold-tolerant compared with Vv and Vr. In contrast, Va has preserved many fewer nucleotide binding site (NBS) disease resistance genes than the other grapes. Notably, multi-omics analysis identified one trans-cinnamate 4-monooxygenase gene positively correlated to the resveratrol accumulated during Va berry development. A selective sweep analysis revealed a hypothetical Va sex-determination region (SDR). Besides, a PPR-containing protein-coding gene in the hypothetical SDR may be related to sex determination in Va. The content and arrangement order of genes in the putative SDR of female Va were similar to those of female Vv. However, the putative SDR of female Va has lost one flavin-containing monooxygenase (FMO) gene and contains one extra protein-coding gene uncharacterized so far. These findings will improve the understanding of Vitis biology and contribute to the improvement of grape breeding.

9.
Mol Pharm ; 21(7): 3613-3622, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38853512

ABSTRACT

The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase linked to the proliferation, survival, invasion, and metastasis of several types of cancers, including colorectal cancer (CRC), particularly when aberrantly activated. Our study strategically designs peptides derived from interactions between c-Met and the antibody Onartuzumab. By utilizing a cyclic strategy, we achieved significantly enhanced peptide stability and affinity. Our in vitro assessments confirmed that the cyclic peptide HYNIC-cycOn exhibited a higher affinity (KD = 83.5 nM) and greater specificity compared with its linear counterpart. Through in vivo experiments, [99mTc]Tc-HYNIC-cycOn displayed exceptional tumor-targeting capabilities and minimal absorption in nontumor cells, as confirmed by single-photon emission computed tomography. Notably, the ratios of tumor to muscle and tumor to intestine, 1 h postinjection, were 4.78 ± 0.86 and 3.24 ± 0.47, respectively. Comparable ratios were observed in orthotopic CRC models, recording 4.94 ± 0.32 and 3.88 ± 0.41, respectively. In summary, [99mTc]Tc-HYNIC-cycOn shows substantial promise as a candidate for clinical applications. We show that [99mTc]Tc-HYNIC-cycOn can effectively target and visualize c-Met-expressing tumors in vivo, providing a promising approach for enhancing diagnostic accuracy when detecting c-Met in CRC.


Subject(s)
Colorectal Neoplasms , Peptides, Cyclic , Proto-Oncogene Proteins c-met , Colorectal Neoplasms/diagnostic imaging , Proto-Oncogene Proteins c-met/metabolism , Peptides, Cyclic/chemistry , Humans , Animals , Mice , Cell Line, Tumor , Mice, Nude , Tomography, Emission-Computed, Single-Photon/methods , Mice, Inbred BALB C , Female , Xenograft Model Antitumor Assays
10.
Medicine (Baltimore) ; 103(25): e38471, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905423

ABSTRACT

Anemia is common in patients with rheumatoid arthritis (RA), and it is unknown whether the dietary inflammatory index (DII) is linked to anemia. This study aimed to clarify the prevalence of anemia in RA patients and its association with the DII. The data utilized in this study were collected from the National Health and Nutrition Examination Survey database from 1999 to 2018. The prevalence of anemia in RA patients was estimated by ethnicity, sex, and age. Weighted multivariate logistic regression was utilized to explore the correlation between anemia risk and DII. The most crucial dietary factors related to the risk of anemia in RA patients were screened by stepwise regression. A nomogram model was established according to key dietary factors. A total of 10.25% (confidence interval, 8.58-11.92%) of RA patients will develop anemia, with the lowest prevalence around the age of 60. In addition, higher DII levels were discovered in anemic patients than in nonanemic patients. In multivariate regression models, an important positive association was revealed between anemia and growing quartiles of DII (Q4 vs Q1: odds ratio = 1.98; confidence interval, 1.25-3.15). In the subgroup analysis, the adjusted relation of DII with anemia in females, Mexicans, smokers, nondrinkers, and age groups ≥ 60 years was statistically significant. The same association was observed in the sensitivity analysis. A nomogram model based on stepwise regression screening of key dietary factors showed good discriminatory power to identify anemic risk in RA patients (area under the curve: 0.707). In patients with RA, high DII levels were associated with the risk of anemia. More attention should be given to controlling dietary inflammation to better prevent and treat anemia.


Subject(s)
Anemia , Arthritis, Rheumatoid , Diet , Nutrition Surveys , Humans , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/epidemiology , Female , Male , Anemia/epidemiology , Anemia/etiology , Middle Aged , Prevalence , Adult , Diet/adverse effects , Aged , Risk Factors , United States/epidemiology , Inflammation/epidemiology , Cross-Sectional Studies
11.
J Mol Cell Cardiol ; 194: 3-15, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844061

ABSTRACT

Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.

12.
Environ Res ; 258: 119397, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876419

ABSTRACT

Global warming and unpredictable nature possess a negative impact on fisheries and the daily activities of other habitats. GIS and remote sensing approach is an effective tool to determine the morphological characteristics of the lake. The present study addresses the interactive effect of climate and landuse changes hit on fish catch in lake fisheries. We used a combination of the landscape disturbance index, vulnerability index, and loss index to construct a complete ecological risk assessment framework based on the landscape structure of regional ecosystems. The results indicate an increase from around 45%-76% in the percentage of land susceptible to moderate to ecological severe risk in the landscape from 2004 to 2023. Since 1950, temperature changes have increased by 0.4%, precipitation has decreased by 6%, and water levels have decreased by 4.2%, based on the results. The results indicate that landuse, water temperature, precipitation, and water depth significantly impact the aquaculture system. The findings strongly suggest integrating possible consequences of environmental change on fish yield for governance modeling techniques to minimize their effects.

14.
Sensors (Basel) ; 24(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931653

ABSTRACT

To fully comprehend the patterns of land and ecological damage caused by coal mining subsidence, and to scientifically carry out ecological mine restoration and management, it is urgent to accurately grasp the information of coal mining, particularly in complex coaling areas, such as North Anhui, China. In this paper, a space-air-ground collaborative monitoring system was constructed for coal mining areas based on multi-source remote sensing data and subsidence characteristics of coaling areas were investigated in North Anhui. It was found that from 2019 to 2022, 16 new coal mining subsidence areas were found in northern Anhui, with the total area increasing by 8.1%. In terms of land use, water areas were increased by 101.9 km2 from 2012 to 2022, cultivated land was decreased by 99.3 km2, and residence land was decreased by 11.8 km2. The depth of land subsidence in the subsidence areas is divided into 307.9 km2 of light subsidence areas with a subsidence depth of less than 500 mm; 161.8 km2 of medium subsidence areas with a subsidence depth between 500 mm and 1500 mm; and 281.2 km2 of heavy subsidence areas with a subsidence depth greater than 1500 mm. The total subsidence governance area is 191.2 km2, accounting for 26.5% of the total subsidence area. From the perspective of prefecture-level cities, the governance rate reaches 51.3% in Huaibei, 10.1% in Huainan, and 13.6% in Fuyang. The total reclamation area is 68.8 km2, accounting for 34.5% of the subsidence governance area. At present, 276.1 km2 within the subsidence area has reached stable subsidence conditions, mainly distributed in the Huaibei mining area, which accounts for about 60% of the total stable subsidence area.

15.
Exp Eye Res ; 245: 109953, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838974

ABSTRACT

The objective of this study was to investigate the biological feasibility and surgical applicability of decellularized porcine small intestinal submucosa (DSIS) in conjunctiva reconstruction. A total of 52 Balb/c mice were included in the study. We obtained the DSIS by decellularization, evaluated the physical and biological properties of DSIS in vitro, and further evaluated the effect of surgical transplantation of DSIS scaffold in vivo. The histopathology and ultrastructural analysis results showed that the scaffold retained the integrity of the fibrous morphology while removing cells. Biomechanical analysis showed that the elongation at break of the DSIS (239.00 ± 12.51%) were better than that of natural mouse conjunctiva (170.70 ± 9.41%, P < 0.05). Moreover, in vivo experiments confirmed the excellent biocompatibility of the decellularized scaffolds. In the DSIS group, partial epithelialization occurred at day-3 after operation, and the conjunctival injury healed at day-7, which was significantly faster than that in human amniotic membrane (AM) and sham surgery (SHAM) group (P < 0.05). The number and distribution of goblet cells of transplanted DSIS were significantly better than those of the AM and SHAM groups. Consequently, the DSIS scaffold shows excellent biological characteristics and surgical applicability in the mouse conjunctival defect model, and DSIS is expected to be an alternative scaffold for conjunctival reconstruction.

16.
Front Plant Sci ; 15: 1392355, 2024.
Article in English | MEDLINE | ID: mdl-38721334

ABSTRACT

Selenium (Se) is a crucial micronutrient for human health. Plants are the primary source of Se for humans. Selenium in the soil serves as the primary source of Se for plants. The soil contains high total Se content in large areas in Guangxi, China. However, the available Se is low, hindering Se uptake by plants. Microorganisms play a pivotal role in the activation of Se in the soil, thereby enhancing its uptake by plants. In this study, selenobacteria were isolated from Se-rich soils in Guangxi. Then two selenobacteria strains, YLB1-6 and YLB2-1, representing the highest (30,000 µg/mL) and lowest (10,000 µg/mL) Se tolerance levels among the Se-tolerant bacteria, were selected for subsequent analysis. Although the two selenobacteria exhibited distinct effects, they can significantly transform Se species, resulting in a decrease in the soil residual Se (RES-Se) content while concurrently increasing the available Se (AVA-Se) content. Selenobacteria also enhance the transformation of Se valencies, with a significant increase observed in soluble Se6+ (SOL-Se6+). Additionally, selenobacteria can elevate the pH of acidic soil. Selenobacteria also promote the uptake of Se into plants. After treatment with YLB1-6 and YLB2-1, the Se content in the aboveground part of Chinese flowering cabbage increased by 1.96 times and 1.77 times, respectively, while the Se accumulation in the aboveground part of the plant significantly increased by 104.36% and 81.69%, respectively, compared to the control. Further whole-genome sequencing revealed the genetic difference between the two selenobacteria. Additionally, 46 and 38 candidate genes related to selenium utilization were identified from YLB1-6 and YLB2-1, respectively. This work accelerates our understanding of the potential molecular mechanism of Se biofortification by selenobacteria. It also provides microorganisms and gene targets for improving crop varieties or microorganisms to exploit the rich Se source in soil.

17.
Microorganisms ; 12(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792797

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) cause serious stress to biological health and the soil environment as persistent pollutants. Despite the wide use of biochar in promoting soil improvement, the mechanism of biochar removing soil PAHs through rhizosphere effect in the process of phytoremediation remain uncertain. In this study, the regulation of soil niche and microbial degradation strategies under plants and biochar were explored by analyzing the effects of plants and biochar on microbial community composition, soil metabolism and enzyme activity in the process of PAH degradation. The combination of plants and biochar significantly increased the removal of phenanthrene (6.10%), pyrene (11.50%), benzo[a]pyrene (106.02%) and PAHs (27.10%) when compared with natural attenuation, and significantly increased the removal of benzo[a]pyrene (34.51%) and PAHs (5.96%) when compared with phytoremediation. Compared with phytoremediation, the combination of plants and biochar significantly increased soil nutrient availability, enhanced soil enzyme activity (urease and catalase), improved soil microbial carbon metabolism and amino acid metabolism, thereby benefiting microbial resistance to PAH stress. In addition, the activity of soil enzymes (dehydrogenase, polyphenol oxidase and laccase) and the expression of genes involved in the degradation and microorganisms (streptomyces, curvularia, mortierella and acremonium) were up-regulated through the combined action of plants and biochar. In view of the aforementioned results, the combined application of plants and biochar can enhance the degradation of PAHs and alleviate the stress of PAH on soil microorganisms.

18.
Bioresour Technol ; 402: 130762, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692371

ABSTRACT

Ionic cadmium (Cd (II)) in water is a significant threat to ecosystems, the environment, and human health. Research is currently focused on developing efficient adsorption materials to combat Cd (II) pollution in water. One promising solution involves co-pyrolyzing solid residue from anaerobic digestion of food waste with oil-based drill cuttings pyrolysis residue to create a biochar with high organic matter content. This biochar has a lower heavy metal content and leaching toxicity compared to China's national standards, making it both safe and resourceful. It exhibits a high adsorption capacity for Cd (II) in water, reaching up to 47.80 ± 0.37 mg/g. Raising the pyrolysis temperature above 600 °C and increasing the amount of pyrolysis residue beyond 30 % enhances the biochar's adsorption capacity. The adsorption process is primarily driven by mineral precipitation, offering a promising approach for dual waste resource management and reducing heavy metal pollution.


Subject(s)
Cadmium , Charcoal , Solid Waste , Cadmium/chemistry , Charcoal/chemistry , Adsorption , Pyrolysis , Water Pollutants, Chemical/chemistry , Minerals/chemistry , Chemical Precipitation , Water Purification/methods
19.
Transl Cancer Res ; 13(4): 1642-1664, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38737683

ABSTRACT

Background: The adenosine triphosphate-binding-cassette (ABC) transporter orchestrates the transmembrane transport of diverse substrates with the aid of ATP as an energy source. ABC transporter constitutes a widespread superfamily of transporters prominently present on the cellular membrane of organisms. Advancements in understanding have unveiled additional roles beyond mere intracellular or extracellular transport functions for the ABC protein family, encompassing involvement in DNA repair, protein translation, and gene expression regulation. Yet its role in tumors is still unknown. Methods: This study drew support from multiple databases, including Gene Expression Omnibus (GEO), European Genome-phenome Archive (EGA), The Cancer Genome Atlas (TCGA), and employed multidimensional bioinformatics analyses, incorporating online databases and the R-project. Through a comprehensive analysis, we seek to discern transcriptional-level disparities among genes and their consequential impacts on prognosis, tumor microenvironment (TME), stemness score, immune subtypes, clinical characteristics, and drug sensitivity across human cancers. Results: ABC transporter subfamily B (ABCB) family genes exhibited heightened expression across diverse tumors, demonstrating a significant correlation with overall prognosis in pan-cancer contexts. Notably, gene expression levels manifested substantial associations with TME, stemness score, immune subtypes, clinical characteristics, and drug sensitivity in specific cancers, including kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), and pancreatic adenocarcinoma (PAAD). Within this subset, transporter associated with antigen processing 1 (TAP1), TAP2, and ABCB6 emerged as noteworthy oncogenes. Conclusions: The outcomes of this study contribute to a comprehensive understanding of the implications of ABCB family genes in tumor progression, offering insights into potential therapeutic targets for cancer. Notably, the identification of ABCB6 as a significant oncogene suggests promising avenues for targeted therapies in KIRP, LIHC, and PAAD.

20.
Biomed Pharmacother ; 175: 116751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754266

ABSTRACT

Anesthesia inhibits neural activity in the brain, causing patients to lose consciousness and sensation during the surgery. Layers 2/3 of the cortex are important structures for the integration of information and consciousness, which are closely related to normal cognitive function. However, the dynamics of the large-scale population of neurons across multiple regions in layer 2/3 during anesthesia and recovery processes remains unclear. We conducted simultaneous observations and analysis of large-scale calcium signaling dynamics across multiple cortical regions within cortical layer 2/3 during isoflurane anesthesia and recovery in vivo by high-resolution wide-field microscopy. Under isoflurane-induced anesthesia, there is an overall decrease in neuronal activity across multiple regions in the cortical layer 2/3. Notably, some neurons display a paradoxical increase in activity during anesthesia. Additionally, the activity among multiple cortical regions under anesthesia was homogeneous. It is only during the recovery phase that variability emerges in the extent of increased neural activity across different cortical regions. Within the same duration of anesthesia, neural activity did not return to preanesthetic levels. To sum up, anesthesia as a dynamic alteration of brain functional networks, encompassing shifts in patterns of neural activity, homogeneousness among cortical neurons and regions, and changes in functional connectivity. Recovery from anesthesia does not entail a reversal of these effects within the same timeframe.


Subject(s)
Anesthetics, Inhalation , Cerebral Cortex , Isoflurane , Neurons , Isoflurane/pharmacology , Neurons/drug effects , Neurons/physiology , Animals , Anesthetics, Inhalation/pharmacology , Male , Cerebral Cortex/drug effects , Mice , Calcium Signaling/drug effects , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...