Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Small ; 20(5): e2304813, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37752747

ABSTRACT

Anti-site defective potassium poly(heptazine imide) (KPHI) with the central nitrogen atoms partially replaced by graphitic carbon atoms in the flawed heptazine rings is prepared by direct ionothermal treatment of the rationally designed supramolecular complex in KSCN salt molten. Compared to the KPHIs without the anti-site defect, the anti-site defective KPHI demonstrates significantly improved photocatalytic and dark photocatalytic performances for H2 evolution reaction (HER). In the presence of the hole scavenger, the anti-site defective KPHI exhibits superior photocatalytic stability for HER lasting 20 h, whereas the deactivation is observed from the ordinary KHPIs after 3 h HER. Moreover, the H2 yield in the dark by the stored photoelectrons in the anti-site defective KPHI increases by more than an order of magnitude. Density functional theory calculations reveal that the anti-site defective unit in KPHI not only prevents spin delocalization but also inhibits the deactivation of hole transfer, which are beneficial to photoelectron storage and photocatalytic activity. The findings in this study provide insight into the photophysical and catalytic properties of KPHI, which conclude a strategy to improve the performances for solar energy conversion and storage by incorporating intrinsic anti-site defects in KPHI.

2.
Macromol Rapid Commun ; 44(24): e2300382, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37703910

ABSTRACT

Organic-inorganic hybrid perovskites have garnered significant attention in optoelectronics owing to their outstanding tunable optical characteristics. Controlled growth of perovskite nanocrystals from solutions is key for controlling the emission intensity and photoluminescence lifetime of perovskites. In particular, most studies have focused on controlling the crystallization of perovskite through chemical treatment using chelating ligands or physical treatment via antisolvent diffusion, and there exists a trade-off between the photoluminescence intensity and lifetime of perovskites. Herein, a selective solvent vapor-assisted crystallization with the aid of a functional polymer, which nanoscale perovskite crystals are grown andante from precursor solution, is presented for tuning the crystallization and optical properties of a common halide perovskite, methylammonium lead bromide (MAPbBr3 ). The proposed method here produces perovskite nanocrystals in the range of 200-300 nm. The spin-coated thin film formed from the perovskite solution exhibits strong green photoluminescence with a long lifetime. The effects of the functional group and polymer dosage on the crystallization of MAPbBr3 are systematically investigated, and the crystallization mechanism is explained based on a modified LaMer model. This study provides an advanced solution process for precisely controlling perovskite crystallization to enhance their optical properties for next-generation optoelectronic devices.


Subject(s)
Calcium Compounds , Gases , Crystallization , Diffusion
3.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36677940

ABSTRACT

Photocatalysis is a hopeful technology to solve various environmental problems, but it is still a technical task to produce large-scale photocatalysts in a simple and sustainable way. Here, nano-flower ß-Bi2O3/TiO2 composites were prepared via a facile solvothermal method, and the photocatalytic performances of ß-Bi2O3/TiO2 composites with different Bi/Ti molar ratios were studied. The nano-flower Bi2O3/TiO2 composites were studied by SEM, XRD, XPS, BET, and PL. The PL result proved that the construction of staggered heterojunction enhanced the separation efficiency of carriers. The degradation RhB was applied to study the photocatalytic performances of prepared materials. The results showed that the degradation efficiency of RhB increased from 61.2% to 99.6% when the molar ratio of Bi/Ti was 2.1%. It is a mesoporous approach to enhance photocatalytic properties by forming heterojunction in Bi2O3/TiO2 composites, which increases the separation efficiency of the generated carriers and improves photocatalytic properties. The photoactivity of the Bi2O3/TiO2 has no evident changes after the fifth recovery, indicating that the Bi2O3/TiO2 composite has distinguished stability.


Subject(s)
Bismuth , Titanium , Catalysis
4.
JACC CardioOncol ; 5(6): 775-787, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38205000

ABSTRACT

Background: Radiotherapy may cause grade ≥3 cardiac events, necessitating a better understanding of risk factors. The potential predictive role of imaging biomarkers with radiotherapy doses for cardiac event occurrence has not been studied. Objectives: The aim of this study was to establish the associations between cardiac substructure dose and coronary artery calcium (CAC) scores and cardiac event occurrence. Methods: A retrospective cohort analysis included patients with locally advanced non-small cell lung cancer treated with radiotherapy (2006-2018). Cardiac substructures, including the left anterior descending coronary artery, left main coronary artery, left circumflex coronary artery, right coronary artery, and TotalLeft (left anterior descending, left main, and left circumflex coronary arteries), were contoured. Doses were measured in 2-Gy equivalent units, and visual CAC scoring was compared with automated scoring. Grade ≥3 adverse cardiac events were recorded. Time-dependent receiver-operating characteristic modeling, the log-rank statistic, and competing-risk models were used to measure prediction performance, threshold modeling, and the cumulative incidence of cardiac events, respectively. Results: Of the 233 eligible patients, 61.4% were men, with a median age of 68.1 years (range: 34.9-90.7 years). The median follow-up period was 73.7 months (range: 1.6-153.9 months). Following radiotherapy, 22.3% experienced cardiac events, within a median time of 21.5 months (range: 1.7-118.9 months). Visual CAC scoring showed significant correlation with automated scoring (r = 0.72; P < 0.001). In a competing-risk multivariable model, TotalLeft volume receiving 15 Gy (per 1 cc; HR: 1.38; 95% CI: 1.11-1.72; P = 0.004) and CAC score >5 (HR: 2.51; 95% CI: 1.08-5.86; P = 0.033) were independently associated with cardiac events. A model incorporating age, TotalLeft CAC (score >5), and volume receiving 15 Gy demonstrated a higher incidence of cardiac events for a high-risk group (28.9%) compared with a low-risk group (6.9%) (P < 0.001). Conclusions: Adverse cardiac events associated with radiation occur in more than 20% of patients undergoing thoracic radiotherapy within a median time of <2 years. The present findings provide further evidence to support significant associations between TotalLeft radiotherapy dose and cardiac events and define CAC as a predictive risk factor.

5.
Medicine (Baltimore) ; 101(16): e29185, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35482987

ABSTRACT

BACKGROUND: Cancer patients usually suffer from intensive chemotherapy-related oral mucositis (OM), yet limited effective treatment can rapidly alleviate OM severity. METHODS: This prospective study examined the efficacy of Reishimmune-S containing one fungal immunomodulatory protein, GMI on OM in patients with head and neck cancer. Patients with head and neck cancer and the diagnosis of chemotherapy-related OM were enrolled randomizedly to receive standard supportive care with/without Reishimmune-S 500 mg/day orally for consecutive 14 days. Due to intolerance to standard supportive care alone in the control arm, only the experimental arm with Reishimmune-S supplementation was analyzed in our trial. OM grading was evaluated as the primary outcome on day 1, 8, and 15. Secondary outcomes were absolute neutrophil counts and quality of life assessed by the EORTC-QLQ-H&N 35 questionnaire on day 1, 8, and 15. RESULTS: Reishimmune-S supplement significantly reduced OM grading both at day 8 and 15. Trouble with social contact and weight loss conditions were also improved by Reishimmune-S. Reishimmune-S did not significantly affect absolute neutrophil counts during the 15-day follow-up. CONCLUSION: Reishimmune-S supplement potentially alleviates the severity of chemotherapy-mediated OM.


Subject(s)
Head and Neck Neoplasms , Stomatitis , Chemoradiotherapy , Head and Neck Neoplasms/drug therapy , Humans , Prospective Studies , Quality of Life , Stomatitis/chemically induced , Stomatitis/drug therapy
6.
Adv Sci (Weinh) ; 9(8): e2105190, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35064648

ABSTRACT

Neuromorphic computation possesses the advantages of self-learning, highly parallel computation, and low energy consumption, and is of great promise to overcome the bottleneck of von Neumann computation. In this work, a series of poly(3-hexylthiophene) (P3HT)-based block copolymers (BCPs) with different coil segments, including polystyrene, poly(2-vinylpyridine) (P2VP), poly(2-vinylnaphthalene), and poly(butyl acrylate), are utilized in photosynaptic transistor to emulate paired-pulse facilitation, spike time/rate-dependent plasticity, short/long-term neuroplasticity, and learning-forgetting-relearning processes. P3HT serves as a carrier transport channel and a photogate, while the insulating coils with electrophilic groups are for charge trapping and preservation. Three main factors are unveiled to govern the properties of these P3HT-based BCPs: i) rigidity of the insulating coil, ii) energy levels between the constituent polymers, and iii) electrophilicity of the insulating coil. Accordingly, P3HT-b-P2VP-based photosynaptic transistor with a sought-after BCP combination demonstrates long-term memory behavior with current contrast up to 105 , short-term memory behavior with high paired-pulse facilitation ratio of 1.38, and an ultralow energy consumption of 0.56 fJ at an operating voltage of -0.0003 V. As far as it is known, this is the first work to utilize conjugated BCPs in an electret-free photosynaptic transistor showing great potential to the artificial intelligence technology.

7.
J Food Saf ; 41(6): e12932, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34898751

ABSTRACT

COVID-19 has brought speculations on potential transmission routes of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of the pandemic. It is reported that the main route of virus transmission to be person-to-person by respiratory droplets; however, people have raised concerns on the possible transmission of SARS-CoV-2 to humans via food and packaging and its potential effects on food safety. This review discusses food safety issues in the COVID-19 pandemic and reveals its possible transmission in cold-chain food. The first outbreak of COVID-19 in late 2019 was associated with a seafood market in Wuhan, China, while the second outbreak of COVID-19 in June 2020 was also related to a seafood market in Beijing, China. As of 2020, several frozen seafood products linked with SARS-CoV-2 have been reported in China. According to the current survey and scientific studies, the risk of infection by SARS-CoV-2 from cold-chain food, food products, and food packaging is thought to be very low. However, studies on food cold chain contamination have shown that SARS-CoV-2 remained highly stable under refrigerated (4°C) and even in freezing conditions (-10 to -80°C). Since one mode of SARS-CoV-2 transmission appears to be touching contaminated surfaces, it is important to clean and sanitize food contact surfaces properly. Understanding food safety hazard risks is essential to avoid potential negative health effects and SARS-CoV-2 transmission in the food supply chain during the COVID-19 pandemic.

8.
Sensors (Basel) ; 21(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34450909

ABSTRACT

Many studies have shown that slow breathing training is beneficial for human health. However, several factors might discourage beginners from continuing their training. For example, a long training period is generally required for benefit realization, and there is no real-time feedback to trainees to adjust their breathing control strategy. To raise the user's interest in breathing exercise training, a virtual reality system with multimodal biofeedback is proposed in this work. In our system, a realistic human model of the trainee is provided in virtual reality (VR). At the same time, abdominal movements are sensed, and the breathing rate can be visualized. Being aware of the breathing rate, the trainee can regulate his or her breathing to achieve a slower breathing rate. An additional source of tactile feedback is combined with visual feedback to provide a more immersive experience for the trainees. Finally, the user's satisfaction with the proposed system is reported through questionnaires. Most of the users find it enjoyable to use such a system for mediation training.


Subject(s)
Virtual Reality , Biofeedback, Psychology , Breathing Exercises , Feasibility Studies , Female , Humans , Male , Respiratory Rate
9.
Sensors (Basel) ; 21(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34300605

ABSTRACT

Distributed acoustic sensing (DAS) in optical fibers detect dynamic strains or sound waves by measuring the phase or amplitude changes of the scattered light. This contrasts with other distributed (and more conventional) methods, such as distributed temperature (DTS) or strain (DSS), which measure quasi-static physical quantities, such as intensity spectrum of the scattered light. DAS is attracting considerable attention as it complements the conventional distributed measurements. To implement DAS in commercial applications, it is necessary to ensure a sufficiently high signal-noise ratio (SNR) for scattered light detection, suppress its deterioration along the sensing fiber, achieve lower noise floor for weak signals and, moreover, perform high-speed processing within milliseconds (or sometimes even less). In this paper, we present a new, real-time DAS, realized by using the time gated digital-optical frequency domain reflectometry (TGD-OFDR) method, in which the chirp pulse is divided into overlapping bands and assembled after digital decoding. The developed prototype NBX-S4000 generates a chirp signal with a pulse duration of 2 µs and uses a frequency sweep of 100 MHz at a repeating frequency of up to 5 kHz. It allows one to detect sound waves at an 80 km fiber distance range with spatial resolution better than a theoretically calculated value of 2.8 m in real time. The developed prototype was tested in the field in various applications, from earthquake detection and submarine cable sensing to oil and gas industry applications. All obtained results confirmed effectiveness of the method and performance, surpassing, in conventional SM fiber, other commercially available interrogators.

11.
ACS Appl Mater Interfaces ; 13(17): 20417-20426, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33886254

ABSTRACT

Photonic transistor memory has received increasing attention as next-generation optoelectronic devices for light fidelity (Li-Fi) application due to the attractive advantages of ultra-speed, high security, and low power consumption. However, most transistor-type photonic memories developed to date still rely on electrical bias for operation, imposing certain limits on data transmission efficiency and energy consumption. In this study, the dual manipulation of "photo-writing" and "photo-erasing" of a novel photonic transistor memory is successfully realized by cleverly utilizing the complementary light absorption between the photoactive material, n-type BPE-PTCDI, in the active channel and the hybrid floating gate, CH3NH3PbBr3/poly(2-vinylpyridine). The fabricated device not only can be operated under the full spectrum but also shows stable switching cycles of photo-writing (PW)-reading (R)-photo-erasing (PE)-reading (R) (PW-R-PE-R) with a high memory ratio of ∼104, and the memory characteristics possess a stable long-term retention of >104 s. Notably, photo-erasing only requires 1 s light illumination. Due to the fully optical functionality, the rigid gate electrode is removed and a novel two-terminal flexible photonic memory is fabricated. The device not only exhibits stable electrical performance after 1000 bending cycles but also manifests a multilevel functional behavior, demonstrating a promising potential for the future development of photoactive electronic devices.

12.
ACS Appl Mater Interfaces ; 13(2): 2932-2943, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33423476

ABSTRACT

The mechanical properties and structural design flexibility of charge-trapping polymer electrets have led to their widespread use in organic field-effect transistor (OFET) memories. For example, in the electrets of polyfluorene-based conjugated/insulating block copolymers (BCPs), the confined fiberlike polyfluorene nanostructures in the insulating polymer matrix act as effective hole-trapping sites, leading to controllable memory performance through the design of BCPs. However, few studies have reported intrinsically stretchable charge-trapping materials and their memory device applications, and a practical method to correlate the thin-film morphology of BCP electrets with their charge-trapping ability has not yet been developed. In this study, a series of new conjugated/insulating BCPs, poly(9,9-di-n-hexyl-2,7-fluorene)-block-poly(δ-decanolactone)s (PF-b-PDLx, x = 1-3), as stretchable hole-trapping materials are reported. The linear and branched PDL blocks with comparable molecular weights were used to investigate the effect of polymer architecture on morphology and device performance. Moreover, the coverage area of the polyfluorene nanofibers on the BCP films was extracted from atomic force microscopy images, which can be correlated with the trapping density of the polymer electrets. The branched PDL segments not only improve stretchability but also tailor crystallinity and phase separation of the BCPs, thus increasing their charge-trapping ability. The OFET memory device with PF-b-PDL3 as the electret layer exhibited the largest memory window (102 V) and could retain its performance at up to 100% strain. This research highlights the importance of the BCP design for developing stretchable charge-trapping materials.

13.
Cancer Manag Res ; 13: 9305-9318, 2021.
Article in English | MEDLINE | ID: mdl-35221721

ABSTRACT

PURPOSE: Pemetrexed-based chemotherapy (Pem-C) is the first-line chemotherapy for advanced non-squamous non-small cell lung cancer (NSCLC). However, limited tumor-associated proteins in blood are available to predict pemetrexed response and/or survival. PATIENTS AND METHODS: Plasma samples from three responders and three nonresponders with stage IIIB-IV NSCLC were collected prior to Pem-C and analyzed using Proteome ProfilerTM Human XL Oncology Array to detect 84 oncology-related proteins. The plasma concentrations of cathepsin S, endoglin (ENG), and matrix metalloproteinases 3 and 9 in 71 patients with advanced NSCLC treated with Pem-C were further measured using enzyme-linked immunosorbent assay based on the remarkable differences in the four proteins between responders and nonresponders in the array results. RESULTS: Pem-C responders had significantly higher ENG levels but not the other three markers than nonresponders (mean ENG level: 27.1 ± 7.4 vs 22.3 ± 6.9, p < 0.01). High ENG concentration was correlated with improved progression-free survival (hazard ratio [HR]: 0.52, 95% confidence interval [CI]: 0.31-0.86, p < 0.01) and overall survival (HR: 0.55, 95% CI: 0.32-0.94, p < 0.05) in patients treated with Pem-C, and the ENG level was an independent factor in our cohort (HR: 0.54, 95% CI: 0.33-0.89, p < 0.05). ENG concentration in Pem-C responders also significantly increased at the time of best response (p < 0.05). CONCLUSION: Cumulatively, this study reveals that ENG is correlated with Pem-C responsiveness in patients, which indicates the potential use of plasma ENG levels as a non-invasive biomarker for pemetrexed-based treatment in patients with non-squamous NSCLC.

14.
ACS Appl Mater Interfaces ; 12(45): 50648-50659, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33138353

ABSTRACT

Conjugated polymers synthesized through random terpolymerization have recently attracted great research interest due to the synergetic effect on the polymer's crystallinity and semiconducting properties. Several studies have demonstrated the efficacy of random terpolymerization in fine-tuning the aggregation behavior and optoelectronic property of conjugated polymers to yield enhanced device performance. However, as an influential approach of backbone engineering, its efficacy in modulating the mobility-stretchability property of high-performance conjugated polymers has not been fuller explored to date. Herein, a series of random terpolymers based on the diketopyrrolopyrrole-bithiophene (DPP-2T) backbone incorporating different amounts of isoindigo (IID) unit are synthesized, and their structure-mobility-stretchability correlation is thoroughly investigated. Our results reveal that random terpolymers containing a low IID content (DPP95 and DPP90) show enhanced interchain packing and solid-state aggregation to result in improved charge-transporting performance (can reach 4 order higher) compared to the parent polymer DPP100. In addition, owing to the enriched amorphous feature, DPP95 and DPP90 deliver an improved orthogonal mobility (µh) of >0.01 cm2 V-1 s-1 under a 100% strain, higher than the value (∼0.002 cm2 V-1 s-1) of DPP100. Moreover, DPP95 even yields 20% enhanced orthogonal µh retention after 800 stretching-releasing cycles with 60% strain. As concluded from a series of analyses, the improved mobility-stretchability property exerted by random terpolymerization arises from the enriched amorphous feature and enhanced aggregation behavior imposed by the geometry mismatch between different acceptors (DPP and IID). This study demonstrates that backbone engineering through rational random terpolymerization not only enhances the mobility-stretchability of a conjugated polymer but also realizes a better mechanical endurance, providing a new perspective for the design of high-performance stretchable conjugated polymers.

15.
Toxics ; 8(3)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947820

ABSTRACT

While catecholamines like epinephrine (E) and norepinephrine (NE) are commonly used in emergency medicine, limited studies have discussed the harm of exogenously induced catecholamine overdose. We investigated the possible toxic effects of excessive catecholamine administration on cardiopulmonary function and structure via continuous 6 h intravenous injection of E and/or NE in rats. Heart rate, echocardiography, and ventricular pressure were measured throughout administration. Cardiopulmonary structure was also assessed by examining heart and lung tissue. Consecutive catecholamine injections induced severe tachycardia. Echocardiography results showed NE caused worse dysfunction than E. Simultaneously, both E and NE led to higher expression of Troponin T and connexin43 in the whole ventricles, which increased further with E+NE administration. The NE and E+NE groups showed severe pulmonary edema while all catecholamine-administering groups demonstrated reduced expression of receptor for advanced glycation end products and increased connexin43 levels in lung tissue. The right ventricle was more vulnerable to catecholamine overdose than the left. Rats injected with NE had a lower survival rate than those injected with E within 6 h. Catecholamine overdose induces acute lung injuries and ventricular cardiomyopathy, and E+NE is associated with a more severe outcome. The similarities of the results between the NE and E+NE groups may indicate a predominant role of NE in determining the overall cardiopulmonary damage. The results provide important clinical insights into the pathogenesis of catecholamine storm.

16.
Aging Dis ; 11(4): 791-800, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32765946

ABSTRACT

To explore the underlying pathogenic mechanism of Parkinson's disease (PD) with concomitant postural abnormalities (PDPA) through the relationship between its gait and brain function characteristics. PD patients from the neurology outpatient clinic at Ruijin Hospital were recruited and grouped according to whether postural abnormalities (including camptocormia and Pisa syndrome) were present. PD-related scale assessments, three-dimensional gait tests and brain resting-state functional magnetic imaging were performed and analyzed. The gait characteristics independently associated with PDPA were decreased pelvic obliquity angle and progressive downward movement of the center of mass during walking. PDPA features included decreased functional connectivity between the left insula and bilateral supplementary motor area, which was significantly correlated with reduced Berg Balance Scale scores. Functional connectivity between the right insula and bilateral middle frontal gyrus was decreased and significantly correlated with a decreased pelvic obliquity angle and poor performance on the Timed Up and Go test. Moreover, through diffusion tensor imaging analysis, the average fractional anisotropy value of the fibers connecting the left insula and left supplementary motor area was shown to be decreased in PDPA. There is decreased functional connectivity among the insula, supplementary motor area and middle frontal gyrus with structural abnormalities between the left insula and the left supplementary motor area; these changes in brain connectivity are probably among the causes of gait dysfunction in PDPA and provide some clues regarding the pathogenic mechanisms of PDPA.

17.
Phys Rev Lett ; 124(18): 180503, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32441958

ABSTRACT

Quantum networks illustrate the use of connected nodes of quantum systems as the backbone of distributed quantum information processing. When the network nodes are entangled in graph states, such a quantum platform is indispensable to almost all the existing distributed quantum tasks. Unfortunately, real networks unavoidably suffer from noise and technical restrictions, making nodes transit from quantum to classical at worst. Here, we introduce a figure of merit in terms of the number of classical nodes for quantum networks in arbitrary graph states. Such a network property is revealed by exploiting a novel Einstein-Podolsky-Rosen steerability. Experimentally, we demonstrate photonic quantum networks of n_{q} quantum nodes and n_{c} classical nodes with n_{q} up to 6 and n_{c} up to 18 using spontaneous parametric down-conversion entanglement sources. We show that the proposed method is faithful in quantifying the classical defects in prepared multiphoton quantum networks. Our results provide novel identification of generic quantum networks and nonclassical correlations in graph states.

18.
Sci Rep ; 10(1): 3093, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32080312

ABSTRACT

Quantum teleportation enables networking participants to move an unknown quantum state between the nodes of a quantum network, and hence constitutes an essential element in constructing large-sale quantum processors with a quantum modular architecture. Herein, we propose two protocols for teleporting qubits through an N-node quantum network in a highly-entangled box-cluster state or chain-type cluster state. The proposed protocols are systematically scalable to an arbitrary finite number N and applicable to arbitrary size of modules. The protocol based on a box-cluster state is implemented on a 14-qubit IBM quantum computer for N up to 12. To identify faithful networking teleportation, namely that the elements on real devices required for the networking teleportation process are all qualified for achieving teleportation task, we quantify quantum-mechanical processes using a generic classical-process model through which any classical strategies of mimicry of teleportation can be ruled out. From the viewpoint of achieving a genuinely quantum-mechanical process, the present work provides a novel toolbox consisting of the networking teleportation protocols and the criteria for identifying faithful teleportation for universal quantum computers with modular architectures and facilitates further improvements in the reliability of quantum-information processing.

19.
ACS Appl Mater Interfaces ; 11(26): 23605-23615, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31252500

ABSTRACT

We report the fabrication and optical/mechanical properties of perovskite/thermoplastic polyurethane (TPU)-based multicolor luminescent core-shell nanofibers and their large-scale fiber mats. One-step coaxial perovskite/TPU nanofibers had a high photoluminescence quantum yield value exceeding 23.3%, surpassing that of its uniaxial counterpart, due to the homogeneous distribution of perovskite nanoparticles (NPs) by the confinement of the TPU shell. The fabricated core-shell nanofibers exhibited a high mechanical endurance owing to the well elastic properties of TPU and maintained the luminescence intensity even under a 100% stretched state after 1000 stretching-relaxing cycles. By taking advantage of the hydrophobic nature of TPU, the ambient and moisture stability of the fabricated fibers were enhanced up to 1 month. Besides, large-area stretchable nanofibers with a dimension of 15 cm × 30 cm exhibiting various visible-light emission peaks were fabricated by changing the composition of perovskite NPs. Moreover, a large-scale luminescent and stretchable fiber mat was successfully fabricated by electrospinning. Furthermore, the white-light emission from the fabricated fibers and mats was achieved by incorporating orange-light-emitting poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] into the TPU shell and coupling the turquoise blue-light-emitting perovskite NPs in the core site. Finally, the integrity of the perovskite-based TPU fibers was realized by fabricating a light-emitting diode (LED) device containing the orange-light-emitting fibers embedded in the polyfluorene emissive layer. This work demonstrated an effective way to prepare stable and stretchable luminous nanofibers and the integration of such nanofibers into LED devices, which could facilitate the future development of wearable electronic devices.

20.
Toxins (Basel) ; 11(5)2019 05 08.
Article in English | MEDLINE | ID: mdl-31072027

ABSTRACT

Aflatoxins are carcinogenic secondary metabolites of fungi that contaminate many staple crops and foods. Aflatoxin contamination is a worldwide problem, especially in developing countries, posing health hazards, e.g., causing aflatoxicosis and hepatocellular carcinoma, and even death. Biological solutions for aflatoxin detoxification are environmentally friendly and a cheaper alternative than chemical methods. The aims of the current study were to investigate: (1) the ability of MSMEG_5998, an aflatoxin-degrading F420H2-dependent reductase from Mycobacterium smegmatis, to degrade aflatoxin B1 (AFB1) and reduce AFB1-caused damage in HepG2 cell culture model; and (2) whether a thioredoxin (Trx) linkage of MSMEG_5998 enhanced the enzyme activity. We show that Trx-linked MSMEG_5998 degraded 63% AFB1 and native MSMEG_5998 degraded 31% after 4 h at 22 °C, indicating that the Trx-linked enzyme had a better AFB1-degrading ability. In a HepG2 cell culture model, Trx-linked MSMEG_5998 reduced DNA damage and p53-mediated apoptosis caused by AFB1 to a greater extent than the native enzyme. These findings suggest that Trx-linked MSMEG_5998 could potentially be developed to protect the liver from AFB1 damage, or as a candidate protein to reduce AFB1-related toxicity in animals.


Subject(s)
Aflatoxins/toxicity , Mycobacterium smegmatis/enzymology , Oxidoreductases/pharmacology , Protective Agents/pharmacology , Apoptosis/drug effects , DNA Damage , Enzyme Stability , Hep G2 Cells , Humans , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...