Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.639
Filter
1.
Sci Rep ; 14(1): 15057, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38956224

ABSTRACT

Image segmentation is a critical and challenging endeavor in the field of medicine. A magnetic resonance imaging (MRI) scan is a helpful method for locating any abnormal brain tissue these days. It is a difficult undertaking for radiologists to diagnose and classify the tumor from several pictures. This work develops an intelligent method for accurately identifying brain tumors. This research investigates the identification of brain tumor types from MRI data using convolutional neural networks and optimization strategies. Two novel approaches are presented: the first is a novel segmentation technique based on firefly optimization (FFO) that assesses segmentation quality based on many parameters, and the other is a combination of two types of convolutional neural networks to categorize tumor traits and identify the kind of tumor. These upgrades are intended to raise the general efficacy of the MRI scan technique and increase identification accuracy. Using MRI scans from BBRATS2018, the testing is carried out, and the suggested approach has shown improved performance with an average accuracy of 98.6%.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/classification , Humans , Image Processing, Computer-Assisted/methods , Algorithms , Brain/diagnostic imaging , Brain/pathology
2.
Chemistry ; : e202402231, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008402

ABSTRACT

Supramolecular polymers (SPs) are constructed through non-covalent interactions. The dynamic or reversible nature of SPs endows them unique physical and chemical properties, such as self-adaptive and stimuli-response abilities. The topological structures of SPs play an important role in determining the physicochemical properties and functionality. Hyperbranched polymers (HBPs) are highly branched 3D macromolecules with linear, dendritic, and terminal units, which makes them versatile candidates for the construction of SPs with fascinating architectures. The resultant HBP-based SPs perfectly integrated the dynamic/reversible nature of SPs and the 3D topological features and multifunctionality of HBP polymers. To date, various types of HBP-based SPs and their assemblies have been constructed, and their potential applications have been explored as well. This article overviews the current progress on self-assembly of HBP-based SPs. The strategies for construction of HBP-based SPs and their assemblies are discussed. Typical potential applications of the assemblies of HBP-based SPs are also introduced.

3.
Front Neurol ; 15: 1405694, 2024.
Article in English | MEDLINE | ID: mdl-38974683

ABSTRACT

Objective: According to data from several observational studies, there is a strong association between circulating inflammatory cytokines and postherpetic neuralgia (PHN), but it is not clear whether this association is causal or confounding; therefore, the main aim of the present study was to analyze whether circulating inflammatory proteins have a bidirectional relationship with PHN at the genetic inheritance level using a Mendelian randomization (MR) study. Methods: The Genome-Wide Association Study (GWAS) database was used for our analysis. We gathered data on inflammation-related genetic variation from three GWASs of human cytokines. These proteins included 91 circulating inflammatory proteins, tumor necrosis factor-alpha (TNF-α), macrophage inflammatory protein 1b (MIP-1b), and CXC chemokine 13 (CXCL13). The PHN dataset was obtained from the FinnGen biobank analysis round 5, and consisted of 1,413 cases and 275,212 controls. We conducted a two-sample bidirectional MR study using the TwoSampleMR and MRPRESSO R packages (version R.4.3.1). Our main analytical method was inverse variance weighting (IVW), and we performed sensitivity analyses to assess heterogeneity and pleiotropy, as well as the potential influence of individual SNPs, to validate our findings. Results: According to our forward analysis, five circulating inflammatory proteins were causally associated with the development of PHN: interleukin (IL)-18 was positively associated with PHN, and IL-13, fibroblast growth factor 19 (FGF-19), MIP-1b, and stem cell growth factor (SCF) showed reverse causality with PHN. Conversely, we found that PHN was closely associated with 12 inflammatory cytokines, but no significant correlation was found among the other inflammatory factors. Among them, only IL-18 had a bidirectional causal relationship with PHN. Conclusion: Our research advances the current understanding of the role of certain inflammatory biomarker pathways in the development of PHN. Additional verification is required to evaluate the viability of these proteins as targeted inflammatory factors for PHN-based treatments.

4.
J Colloid Interface Sci ; 675: 139-149, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38968634

ABSTRACT

Transition metal selenides (TMS) have received much attention as anode materials for sodium-ion batteries (SIBs) because of their high theoretical capacity and excellent redox reversibility. However, their further development is constrained by the dissolution of transition metal ions and substantial volume changes experienced during cycling. Herein, the high-entropy Prussian blue analogues were selenized by the vapor infiltration method, resulting in the formation of a core-shell structured high-entropy selenides (HESe-6). The core-shell structure with voids and abundant selenium vacancies on the surface effectively mitigates bulk expansion and enhances electronic conductivity. Furthermore, the high-entropy property endows an ultra-stable crystal structure and inhibits the dissolution of metal ions. The ex-situ EIS and in-situ XRD results show that HESe-6 is able to be reversibly transformed into highly conductive ultrafine metal particles upon Na+ embedding, providing more Na+ reactive active sites. In addition, despite the incorporation of up to seven different elements, it exhibits minimal phase transitions during discharge/charge cycles, effectively mitigating stress accumulation. HESe-6 could retain an ultralong-term stability of 765.83 mAh g-1 after 1000 loops even at 1 A g-1. Furthermore, when coupled with the Na3V2(PO4)2O2F cathode, it maintains a satisfactory charge energy density of 303 Wh kg-1 after 300 cycles, which shows promising application prospect in the future.

6.
Article in English | MEDLINE | ID: mdl-39023134

ABSTRACT

There is an urgent need for lithium-ion batteries with high energy density to meet the increasing demand for advanced devices and ecofriendly electric vehicles. Spinel LiNi0.5Mn1.5O4 (LNMO) is the most promising cathode material for achieving high energy density due to its high operating voltage (4.75 V vs Li/Li+) and impressive capacity of 147 mAh g-1. However, the binders conventionally used are prone to high potential and oxidation at the cathode side, resulting in a loss of the ability to bond active material and conductive agent integrity. This can lead to severe capacity fading and irreversible battery failure. This study demonstrates that incorporating acrylic anhydride and methyl methacrylate into conventional acrylonitrile through solution polymerization improves the binding energy and voltage resistance. The results indicate that the triblock poly(acrylonitrile-methyl methacrylate-acrylic anhydride) (PAMA) binder has a much higher peeling strength (0.506 N cm-1) compared to its polyvinylidene fluoride (PVDF) counterpart (0.3 N cm-1), making it a more feasible strategy. When assembled with LiNi0.5Mn1.5O4, the PAMA based electrode maintains a capacity retention of 70.7% after 800 cycles at 0.1 C, which is significantly higher than the 33.9% retention of the PVDFbased electrode. This is due to the large number of polar groups, including ─C≡N and ─C═O, on PAMA, which are conducive to adsorbing lithium polysulfide. The S@PAMA electrode is tested and maintained a capacity value of 628.7 mAh g-1 after long-term cycling, confirming its ability to effectively suppress the shuttle effect.

7.
Microbiome ; 12(1): 128, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020382

ABSTRACT

BACKGROUND: Spring viremia of carp virus (SVCV) infects a wide range of fish species and causes high mortality rates in aquaculture. This viral infection is characterized by seasonal outbreaks that are temperature-dependent. However, the specific mechanism behind temperature-dependent SVCV infectivity and pathogenicity remains unclear. Given the high sensitivity of the composition of intestinal microbiota to temperature changes, it would be interesting to investigate if the intestinal microbiota of fish could play a role in modulating the infectivity of SVCV at different temperatures. RESULTS: Our study found that significantly higher infectivity and pathogenicity of SVCV infection in zebrafish occurred at relatively lower temperature. Comparative analysis of the intestinal microbiota in zebrafish exposed to high- and low-temperature conditions revealed that temperature influenced the abundance and diversity of the intestinal microbiota in zebrafish. A significantly higher abundance of Parabacteroides distasonis and its metabolite secondary bile acid (deoxycholic acid, DCA) was detected in the intestine of zebrafish exposed to high temperature. Both colonization of Parabacteroides distasonis and feeding of DCA to zebrafish at low temperature significantly reduced the mortality caused by SVCV. An in vitro assay demonstrated that DCA could inhibit the assembly and release of SVCV. Notably, DCA also showed an inhibitory effect on the infectious hematopoietic necrosis virus, another Rhabdoviridae member known to be more infectious at low temperature. CONCLUSIONS: This study provides evidence that temperature can be an important factor to influence the composition of intestinal microbiota in zebrafish, consequently impacting the infectivity and pathogenicity of SVCV. The findings highlight the enrichment of Parabacteroides distasonis and its derivative, DCA, in the intestines of zebrafish raised at high temperature, and they possess an important role in preventing the infection of SVCV and other Rhabdoviridae members in host fish. Video Abstract.


Subject(s)
Bacteroidetes , Fish Diseases , Gastrointestinal Microbiome , Rhabdoviridae Infections , Rhabdoviridae , Temperature , Zebrafish , Animals , Fish Diseases/microbiology , Fish Diseases/virology , Rhabdoviridae Infections/virology , Rhabdoviridae/physiology , Rhabdoviridae/pathogenicity , Bacteroidetes/pathogenicity , Water , Infectious hematopoietic necrosis virus/pathogenicity
8.
Biomed Pharmacother ; 178: 117091, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39024840

ABSTRACT

This study investigated the efficacy and mechanism of traditionally made kochujang(TMK) with different capsaicin levels to alleviate memory impairment in rats with scopolamine-induced amnesia. Sprague-Dawley male rats were administered scopolamine (2 mg/kg bw/day) intraperitoneally to suppress the parasympathetic nervous system(PNS) and induce memory impairment. The rats were divided into four experimental groups, each consuming a diet containing 1 % kochujang in a 43-energy% high-fat diet(HFD) for 8 weeks. The TMK samples used for the study were categorized according to their capsaicin(CPS) content as follows: Low-CPS(0.5 mg%), medium-CPS(1.2 mg%), and high-CPS(1.7 mg%). In addition, factory-made kochujang (FMK; 1.1 mg% capsaicin) was also tested. The effects of kochujang were compared with the Control group(scopolamine), Positive-control(scopolamine+donepezil), and Normal-control(saline) fed HFD. Kochujang consumption reduced body weight and fat mass compared to the Control group. Compared to the Control, memory function measured using passive avoidance, water maze, and novel object recognition tests was enhanced in kochujang-fed rats, especially in the Medium-CPS group, similar to Positive-control. The Medium-CPS and Positive-control groups also exhibited inhibition of hippocampal cell death and increased cholesterol and triglyceride contents and mRNA expression of TNF-α and IL-1ß in the brain tissue compared to the Control group. Additionally, TMK elevated short-chain fatty acid, particularly, butyrate concentration in the portal vein. Scopolamine disturbed large intestine cell morphology and gut microbiota composition, and kochujang improved them. Kochujang in the medium-CPS (1.2 mg%) had a more significant impact on the gut microbiota in the interaction analysis between gut microbiota and memory function. In conclusion, kochujang, especially with medium-CPS (1.2 mg%), is a potential dietary intervention to mitigate memory impairment and promote overall cognitive health through improving eubiosis, potentially linked to the gut-brain axis in PNS-suppressed rats.

9.
Chem Commun (Camb) ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028223

ABSTRACT

A Co-CoSe core-shell heterostructure encapsulated into nitrogen-doped carbon nanotubes enables superior zinc air battery performance (172 mW cm-2) and stability (970 h). The enhanced bifunctionality and stability originates from the modulated d band center and confinement effect, respectively.

10.
Proc Natl Acad Sci U S A ; 121(28): e2403581121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968108

ABSTRACT

Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.


Subject(s)
Angiotensin II , COVID-19 , Extracellular Vesicles , Induced Pluripotent Stem Cells , Myocytes, Cardiac , SARS-CoV-2 , Humans , Angiotensin II/pharmacology , COVID-19/virology , COVID-19/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Extracellular Vesicles/metabolism , Induced Pluripotent Stem Cells/metabolism , Apoptosis/drug effects , Lab-On-A-Chip Devices , MicroRNAs/metabolism , MicroRNAs/genetics , Cytokines/metabolism
11.
Pak J Med Sci ; 40(6): 1063-1066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952501

ABSTRACT

Objective: To study whether children with peptic ulcer would have abnormalities in cellular and humoral immune functions, and whether Helicobacter pylori (Hp) infection would affect the immune function of children with peptic ulcer. Methods: This is a retrospective study. The subjects of study were 72 children with diagnosed and cured peptic ulcer (ulcer group), and 50 healthy children with physical examination (control group) at Baoding Hospital, Beijing Children's Hospital Affiliated to Capital Medical University from June 2020 to December 2022. Further detection was conducted on T lymphocyte subsets (CD3+, CD4+, CD8+, and CD4+/CD8+ ratio) and immunoglobulin levels. Results: Of the 72 children with peptic ulcer, 53(73.6%) were positive for Hp (Hp-positive group) and 19 (26.4%) were negative (Hp-negative group). The levels of CD3+, CD4+, and CD4+/CD8+ ratio in the control group were significantly higher than those in the ulcer group, with statistically significant difference (P<0.05); while the level of IgG in the control group was lower than that in the ulcer group, with statistically significant difference (P<0.05). Meanwhile, there were statistically significant differences in that the levels of CD3+, CD4+ and CD8+ were increased in Hp-positive group than those in Hp-negative group before treatment (P<0.05); while CD4+/CD8+ ratio was lower in the former group than that in the latter group, with statistically significant difference (P<0.05). Conclusion: Hp infection can induce the elevation of T lymphocyte subsets. The development of peptic ulcer has an intimate association with the disorder of cellular and humoral immune functions.

12.
Antib Ther ; 7(3): 221-232, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036069

ABSTRACT

BACKGROUND: Several HER2-targeting antibody-drug conjugates (ADC) have gained market approval for the treatment of HER2-expressing metastasis. Promising responses have been reported with the new generation of ADCs in patients who do not respond well to other HER2-targeting therapeutics. However, these ADCs still face challenges of resistance and/or severe adverse effects associated with their particular payload toxins. Eribulin, a therapeutic agent for the treatment of metastatic breast cancer and liposarcoma, is a new choice of ADC payload with a distinct mechanism of action and safety profile. METHODS: We've generated a novel HER2-tageting eribulin-containing ADC, BB-1701. The potency of BB-1701 was tested in vitro and in vivo against cancer cells where HER2-expressing levels vary in a large range. Bystander killing effect and toxin-induced immunogenic cell death (ICD) of BB-1701 were also tested. RESULTS: In comparison with HER2-targeting ADCs with DM1 and Dxd payload, eribulin-containing ADC demonstrated higher in vitro cytotoxicity in HER2-low cancer cell lines. BB-1701 also effectively suppressed tumors in models resistant to DM1 or Dxd containing ADCs. Mode of action studies showed that BB-1701 had a significant bystander effect on HER2-null cells adjacent to HER2-high cells. In addition, BB-1701 treatment induced ICD. Repeated doses of BB-1701 in nonhuman primates showed favorable pharmacokinetics and safety profiles at the intended clinical dosage, route of administration, and schedule. CONCLUSIONS: The preclinical data support the test of BB-1701 in patients with various HER2-expressing cancers, including those resistant to other HER2-targeting ADCs. A phase I clinical trial of BB-1701 (NCT04257110) in patients is currently underway.

13.
J Orthop Surg Res ; 19(1): 417, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030552

ABSTRACT

STUDY DESIGN: A systematic review and Bayesian network meta-analysis (NMA). OBJECTIVE: To compare the effectiveness and safety of different posterior decompression techniques for LSS. Lumbar spinal stenosis (LSS) is one of the most common degenerative spinal diseases that result in claudication, back and leg pain, and disability. Currently, posterior decompression techniques are widely used as an effective treatment for LSS. METHODS: An electronic literature search was performed using the EMBASE, Web of Science, PubMed, and Cochrane Library databases. Two authors independently performed data extraction and quality assessment. A Bayesian random effects model was constructed to incorporate the estimates of direct and indirect treatment comparisons and rank the interventions in order. RESULTS: In all, 14 eligible studies comprising 1,260 patients with LSS were included. Five interventions were identified, namely, spinal processes osteotomy (SPO), conventional laminotomy/laminectomy (CL), unilateral laminotomy/laminectomy (UL), bilateral laminotomy/ laminectomy (BL), and spinous process-splitting laminotomy/laminectomy (SPSL). Among these, SPO was the most promising surgical option for decreasing back and leg pain and for lowering the Oswestry Disability Index (ODI). SSPL had the shortest operation time, while SPSL was associated with maximum blood loss. SPO and UL were superior to other posterior decompression techniques concerning lesser blood loss and shorter length of hospital stay, respectively. Patients who underwent BL had the lowest postoperative complication rates. CONCLUSION: Overall, SPO was found to be a good surgical choice for patients with LSS.


Subject(s)
Bayes Theorem , Decompression, Surgical , Lumbar Vertebrae , Network Meta-Analysis , Spinal Stenosis , Spinal Stenosis/surgery , Humans , Decompression, Surgical/methods , Lumbar Vertebrae/surgery , Treatment Outcome , Laminectomy/methods
14.
Fish Shellfish Immunol ; 152: 109783, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032705

ABSTRACT

Prostaglandin-endoperoxide synthase 2 (PTGS2), a common biological macromolecule, is pivotal for innate immunity and pathogen recognition. In this study, we identified and characterized a CcPTGS2a-like gene in the common carp (Cyprinus carpio) with an open reading frame (ORF) of 1821 bp and epidermal growth factor and peroxidase domains. Our multiple sequence analysis revealed high homology between the amino acid sequence of CcPTGS2a-like and those of its homologs in other fish. CcPTGS2a-like mRNA and protein expressions were significantly upregulated in the spleen, head kidney, liver, and gill tissues upon exposure to Aeromonas hydrophila stimulation. CcPTGS2a-like protein recognized the conserved bacterial surface components and exhibited detectable bacterial binding activity. CcPTGS2a-like overexpression before exposure to A. hydrophila notably enhanced the survival rate of common carp, concomitant with decreased bacterial burden. The NF-κB/ERK signaling pathway initiated the immune response in common carp upon infection with A. hydrophila. CcPTGS2a-like overexpression or interference in the head kidney and Epithelioma papulosum cyprinid cells could modulate the p-NF-κB (p-p-65), p-IκBα, and p-ERK1/2 levels as well as the IL-1ß and IL-6 mRNA expression. These results indicated potential CcPTGS2a-like involvement in the immune response of the common carp to bacterial infections through the NF-κB/ERK signaling pathway.

15.
Comput Struct Biotechnol J ; 23: 2565-2579, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38983650

ABSTRACT

Cervical cancer remains a significant global public health concern, often exhibits cisplatin resistance in clinical settings. Hypoxia, a characteristic of cervical cancer, substantially contributes to cisplatin resistance. To evaluate the therapeutic efficacy of cisplatin in patients with cervical cancer and to identify potential effective drugs against cisplatin resistance, we established a hypoxia-inducible factor-1 (HIF-1)-related risk score (HRRS) model using clinical data from patients treated with cisplatin. Cox and LASSO regression analyses were used to stratify patient risks and prognosis. Through qRT-PCR, we validated nine potential prognostic HIF-1 genes that successfully predict cisplatin responsiveness in patients and cell lines. Subsequently, we identified fostamatinib, an FDA-approved spleen tyrosine kinase inhibitor, as a promising drug for targeting the HRRS-high group. We observed a positive correlation between the IC50 values of fostamatinib and HRRS in cervical cancer cell lines. Moreover, fostamatinib exhibited potent anticancer effects on high HRRS groups in vitro and in vivo. In summary, we developed a hypoxia-related gene signature that suggests cisplatin response prediction in cervical cancer and identified fostamatinib as a potential novel treatment approach for resistant cases.

16.
J Mater Chem B ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989702

ABSTRACT

In this study, a targeted graphene quantum dot-cationic polymer composite gene vector with endothelial cell-targeting CAG peptide was successfully designed and prepared. This vector could efficiently bind and deliver the therapeutic gene pZNF580 to endothelial cells (HUVECs). At a concentration of less than 40 µg mL-1, the results of the CCK-8 assay showed that the relative cell viability of each composite gene vector was greater than 80%, and the results of the flow cytometry assay showed that C-GQDs-PEI-PEG-CAG/pZNF580 (88.96%) and N-GQDs-PEI-PLGA-PEG-CAG/pZNF580 (87.70%) treated groups showed significantly higher cell viability than the positive control group Lip2000/pZNF580 (56.76%). The results of in vitro cell transfection and western blot experiments confirmed that the composite gene vector was able to deliver pZNF580 efficiently and enable the high expression of the ZNF580 protein in HUVECs. The results of the EdU assay, wound healing and Transwell experiments indicated that the composite gene vector/pZNF580 nanoparticles (NPs) could significantly promote the proliferation and migration. The results of the EdU method showed that the proliferative ability of C-GQDs-PEI-PLGA/pZNF580 (84.96 ± 1.99%) and N-GQDs-PEI-PLGA/pZNF580 (85.01 ± 1.31%) treatment groups for HUVECs was significantly higher than that of the positive control group Lip2000/pZNF580 (77.89 ± 2.18%). The results of the scratch assay showed that the cell migration rate of C-GQDs-PEI-PLGA-PEG-CAG/pZNF580 (93.08 ± 1.97%) and N-GQDs-PEI-PLGA-PEG-CAG/pZNF580 (91.99 ± 1.52%) groups was significantly higher than that of the positive control group Lip2000/pZNF580 (85.03 ± 2.21%). In addition, the results of the in vitro angiogenesis assay showed that the C-GQDs-PEI-PLGA-PEG-CAG/pZNF580 and N-GQDs-PEI-PLGA-PEG-CAG/pZNF580 groups had significantly higher angiogenesis-promoting ability than the positive control group, Lip2000/pZNF580.The present study provides a highly efficient and low-toxic method to promote endothelial cell migration in the field of regenerative medicine and a low-toxicity strategy to promote endothelial layer formation, which provides new possibilities for future vascular regeneration therapy.

18.
Clin Exp Rheumatol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38976310
19.
Front Pharmacol ; 15: 1422245, 2024.
Article in English | MEDLINE | ID: mdl-38989143

ABSTRACT

Background: Changes in intestinal flora and intestinal barrier in patients with preclinical and diagnosed rheumatoid arthritis (RA) suggest that intestinal flora and intestinal barrier play an important role in the induction and persistence of RA. Huangqin Qingre Chubi Capsule (HQC) is a clinically effective herbal formula for the treatment of RA, but its therapeutic mechanism has not been fully clarified. Materials and methods: In this study, real-time qPCR (RT-qPCR), 16SrRNA sequencing, Western blot (WB), immunofluorescence and other methods were used to investigate whether HQC inhibited RA. Results: Based on research in collages-induced arthritis (CIA) model in mice, human colon cancer cell line (Caco-2), and fibroblast-like synoviocytes (FLS) from RA patients, we found that intestinal flora was disturbed in CIA model group, intestinal barrier was damaged, and lipolyaccharide (LPS) level was increased, and HQC could regulate intestinal flora and intestinal barrier and reduce LPS translocation into blood. Antibiotic depletion weakened the anti-RA effect of HQC, and HQC fecal microbiota transplantation alleviated RA pathology. In addition, LPS increased the expression of RA pathologic factors MMP3, Fibronectin and inflammatory factors IL-6, TNF-α, IL-1ß and IL-8, indicating that elevated peripheral blood level of LPS was related to RA pathology. Conclusion: The dysregulation of intestinal flora and the disruption of intestinal barrier are significant factors in the development of RA. HQC improves RA by regulating intestinal flora, intestinal barrier and inhibiting LPS translocation into blood. The study unveiles RA's new pathogenesis and laid a scientific groundwork for advancing HQC therapy for RA.

20.
Article in English | MEDLINE | ID: mdl-38991977

ABSTRACT

OBJECTIVE: The identification and diagnosis of children with attention deficit hyperactivity disorder (ADHD) traits is challenging during the preschool stage. Neuropsychological measures may be useful in early assessments. Furthermore, analysis of event-related behavior appears to be an unmet need for clinical treatment planning. Conners' Kiddie Continuous Performance Test (K-CPT) is the most popular well-established neuropsychological measurement but lacks event markers to clarify the heterogeneous behaviors among children. This study utilized a novel commercially available neuropsychological measure, the ΣCOG, which was more game-like and provided definite event markers of individual trial in the test. METHODS: Thirty-three older preschool children (14 were diagnosed with ADHD, mean age: 66.21 ± 5.48 months; 19 demonstrated typical development, mean age: 61.16 ± 8.11 months) were enrolled and underwent comprehensive medical and developmental evaluations. All participants underwent 2 versions of neuropsychological measures, including the K-CPT, Second Edition (K-CPT 2) and the ΣCOG, within a short interval. RESULTS: The study indicated the omissions and response time scores measured in this novel system correlated with clinical measurement of the behavioral scales in all participants and in the group with ADHD; additionally, associations with the traditional K-CPT 2 were observed in commissions and response time scores. Furthermore, this system provided a within-task behavioral analysis that identified the group differences in the specific trial regarding omission and commission errors. CONCLUSIONS: This innovative system is clinically feasible and can be further used as an alternative to the K-CPT 2 especially in research by revealing within-task event-related information analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...