Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.965
Filter
1.
J Gastrointest Oncol ; 15(3): 873-889, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38989439

ABSTRACT

Background: The effect of pharmacological treatment of gastric cancer (GC) is limited, thus, it holds significant scientific importance to thoroughly investigate the molecular mechanisms underlying GC development and identify novel molecules capable of substantially extending patients' survival. This study utilized bioinformatics techniques to identify 11 genes associated with recurrence-free survival (RFS) in GC patients and investigated the potential biological functions of these genes through single-cell transcriptomic analysis. Subsequently, a single gene Cystatin A (CSTA) was selected for further analysis to explore its impact on signaling pathways and treatment. Methods: Differentially expressed genes (DEGs) were identified and overlapped in the analysis of RFS to identify potential prognostic genes for GC patients, based on data from the Cancer Genome Atlas-stomach adenocarcinoma (TCGA-STAD) and GSE54129. Subsequently, a prognostic model based on RFS in GC patients was established. Single-cell sequencing data were employed to explore the potential functions of these model genes. CSTA, one of the RFS-related genes, was further investigated using immunohistochemistry (IHC), Cell Counting Kit 8 (CCK-8), transwell, scratch, colony formation assays, flow cytometry, and Western blotting methods. Results: Through bioinformatics analysis, we identified 23 RFS-related genes in GC. Using the least absolute shrinkage and selection operator (LASSO)-Cox method, an RFS prognostic model was developed which pinpointed 11 GC prognosis-related (GPR) genes as significant factors influencing RFS in GC patients. The single-cell analysis revealed their potential role in affecting differentiation and maturation of pre-fibroblasts thereby impacting RFS in GC patients. CSTA exhibited low expression levels in GC tissues. Overexpression of CSTA promoted apoptosis in GC cells through the caspase-dependent apoptotic pathway and enhanced their response to cisplatin via this same pathway. Conclusions: The 11 GPR genes are primarily enriched within a specific type of stromal cell exhibiting heightened communication, metabolism, and differentiation levels. The gene signature of these stromal cells has implications for patient prognosis. Additionally, CSTA, a gene related to prognosis, has been shown to influence apoptosis levels in GC cells.

2.
Biochemistry ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985857

ABSTRACT

The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein-coupled receptor that has emerged as a promising therapeutic target in cancer and autoimmune diseases. In the present study, we solved the cryo-electron microscopy (cryo-EM) structure of the human CCR8-Gi complex in the absence of a ligand at 2.58 Å. Structural analysis and comparison revealed that our apo CCR8 structure undergoes some conformational changes and is similar to that in the CCL1-CCR8 complex structure, indicating an active state. In addition, the key residues of CCR8 involved in the recognition of LMD-009, a potent nonpeptide agonist, were investigated by mutating CCR8 and testing the calcium flux induced by LMD-009-CCR8 interaction. Three mutants of CCR8, Y1133.32A, Y1724.64A, and E2867.39A, showed a dramatically decreased ability in mediating calcium mobilization, indicating their key interaction with LMD-009 and key roles in activation. These structural and biochemical analyses enrich molecular insights into the agonism and activation of CCR8 and will facilitate CCR8-targeted therapy.

3.
J Environ Radioact ; 278: 107488, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968644

ABSTRACT

224Ra (t1/2 = 3.6 d) has been widely used as a tracer in environmental water research. Here, we present a new method for measuring 224Ra in natural waters using a pulsed ionization chamber (PIC)-based radon detector. This method is based on the measurement of the 224Ra daughter isotope 220Rn (thoron) after reaching secular equilibrium within 7 min. Radium isotopes are concentrated on ''Mn-fibers'' before measurement of 220Rn, which can be distinguished from 222Rn by the difference in their half-lives. The measurement efficiency of the method is 0.20 ± 0.01 cps/Bq at an optimum airflow rate of 1.0 L/min and a water/Mn-fiber weight ratio of 1.0. Results from natural water samples obtained by this method agree well with analysis via RaDeCC, an established technique for 224Ra assessments. Since the PIC system is lighter compared to RaDeCC, easier to operate, and does not require the usage of helium carrier gas and desiccant, this method is recommended for in-situ 224Ra measurement in long-term fieldwork with limited logistical support.

4.
Br J Anaesth ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969535

ABSTRACT

BACKGROUND: Postoperative delirium remains prevalent despite extensive research through randomised trials aimed at reducing its incidence. Understanding trial characteristics associated with interventions' effectiveness facilitates data interpretation. METHODS: Trial characteristics were extracted from eligible trials identified through two systematic literature searches. Multivariable meta-regression was used to investigate trial characteristics associated with effectiveness estimated using odds ratios. Meta-analysis was used to investigate pooled effectiveness. RESULTS: We identified 201 eligible trials. Compared with China, trials from the USA/Canada (ratio of odds ratio, 1.89; 95% confidence interval, 1.45-2.45) and Europe/Australia/New Zealand (1.67; 1.29-2.18) had an 89% and 67% higher odds ratio, respectively, suggesting reduced effectiveness. The effectiveness was enhanced when the incidence of postoperative delirium increased (0.85; 0.79-0.92, per 10% increase). Trials with concerns related to deviations from intended interventions reported increased effectiveness compared with those at low risk (0.69; 0.53-0.90). Compared with usual care, certain interventions appeared to have reduced the incidence of postoperative delirium in low-risk trials with low-to-moderate certainty of evidence. However, these findings should be considered inconclusive because of challenges in grouping heterogeneous interventions, the limited number of eligible trials, the prevalence of small-scale studies, and potential publication bias. CONCLUSIONS: The effectiveness of postoperative delirium trials varied based on the region of trial origin, the incidence of delirium, and the risk of bias. The limitations caution against drawing definitive conclusions from different bodies of evidence. These findings highlight the imperative need to improve the quality of research on a global scale. SYSTEMATIC REVIEW PROTOCOL: PROSPERO (CRD42023413984).

5.
Transl Oncol ; 47: 102041, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959708

ABSTRACT

OBJECTIVE: This study aimed to clarify the mechanism by which Krüppel-like factor 12 (KLF12) affects progesterone sensitivity in endometrial cancer (EC) through the progesterone receptor PGR signaling pathway. METHODS: The relationship of KLF12 with PGR in EC patients was examined by immunohistochemistry, and the expression of KLF12 and PGR in EC cell lines was detected by real-time PCR and western blotting. Cell proliferation assay, plate clone formation, cell apoptosis assay, and cell cycle analysis were conducted to determine the impact of KLF12 intervention on progesterone therapy. CUT&Tag analysis and the dual-luciferase reporter experiment were used to determine the underlying regulatory effect of KLF12 on the PGR DNA sequence. A subcutaneous xenograft nude mouse model was established to validate the in vivo effect of KLF12 on progesterone sensitivity via PGR expression modulation. RESULTS: KLF12 demonstrated decreased progesterone sensitivity and a negative correlation with PGR expression in EC tissues. Progesterone sensitivity was increased by KLF12 deficiency through PGR overexpression, a result that could be significantly reversed by PGR downregulation. PGR was identified as a target gene of KLF12, which could directly bind to the PGR promotor region and inhibit its expression. CONCLUSION: This study is the first to investigate the effect of KLF12 expression on EC cell resistance to progesterone. Our results offer important mechanistic insight into the direct regulation of the PGR promoter region, demonstrating that KLF12 expression strongly suppressed the PGR signaling pathway and, as a result, reduced progesterone sensitivity in EC patients.

6.
Pain Ther ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960997

ABSTRACT

INTRODUCTION: The best treatment yielding clinical benefits was still equivocal and controversial for the treatment of recalcitrant plantar fasciitis (PF). This study aimed to propose a novel combination strategy of ultrasound-guided percutaneous radiofrequency ablation (RFA) and corticosteroid injection (CI) for recalcitrant PF, and to compare its therapeutic effects with CI alone and continued conservative management. METHODS: We retrospectively reviewed consecutive patients with recalcitrant PF who underwent combined strategy (RFA + CI), CI alone, and continue conservative treatment at our institution between October 2021 and February 2023. The technical pearls were described elaborately. A comparison of demographic data and clinical outcomes, including visual analog scale (VAS), Ankle-Hindfoot Scale (AOFAS-AHS), and plantar fascia thickness, were conducted among the three groups. RESULTS: Seventy-one eligible patients were enrolled in this study, with 17 in the combined strategy group, 25 in the CI group, and 29 in the continued conservative treatment group. Both the combined strategy group and the CI group showed significant improvements in VAS scores, AOFAS-AHS scores, and significant reductions in plantar fascia thickness during the 12-month follow-up period compared to those preoperatively (P < 0.05). The combined strategy group achieved comparable immediate pain relief to the CI group after the intervention ([25.7 ± 15.7] vs. [20.6 ± 17.6], P = 0.850). However, the combined strategy group demonstrated superior improvement in symptom and function compared to the CI group at the 3-month (VAS: [21.9 ± 13.5] vs. [39.6 ± 20.4]; AOFAS-AHS: [77.9 ± 12.4] vs. [60.5 ± 17.4], P < 0.05) and 12-month follow-up (VAS: [15.7 ± 12.0] vs. [56.8 ± 17.5]; AOFAS-AHS: [84.5 ± 10.7] vs. [53.8 ± 12.4], P < 0.05). Obvious adverse effects or complications were not identified in either group, while two cases (11.8%) in the combined strategy group and five cases (20.0%) in the CI group experienced unsatisfactory symptom remission. CONCLUSIONS: We introduced and detailed a novel combination strategy involving ultrasound-guided percutaneous RFA and CI for treating recalcitrant PF. The strategy is both effective and safe in alleviating pain and enhancing function throughout the entire treatment course.

7.
Plant Cell Environ ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963121

ABSTRACT

Perennial trees have a recurring annual cycle of wood formation in response to environmental fluctuations. However, the precise molecular mechanisms that regulate the seasonal formation of wood remain poorly understood. Our prior study indicates that VCM1 and VCM2 play a vital role in regulating the activity of the vascular cambium by controlling the auxin homoeostasis of the cambium zone in Populus. This study indicates that abscisic acid (ABA) affects the expression of VCM1 and VCM2, which display seasonal fluctuations in relation to photoperiod changes. ABA-responsive transcription factors AREB4 and AREB13, which are predominantly expressed in stem secondary vascular tissue, bind to VCM1 and VCM2 promoters to induce their expression. Seasonal changes in the photoperiod affect the ABA amount, which is linked to auxin-regulated cambium activity via the functions of VCM1 and VCM2. Thus, the study reveals that AREB4/AREB13-VCM1/VCM2-PIN5b acts as a molecular module connecting ABA and auxin signals to control vascular cambium activity in seasonal wood formation.

8.
Angew Chem Int Ed Engl ; : e202409763, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954763

ABSTRACT

Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi-1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.

9.
aBIOTECH ; 5(2): 140-150, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974862

ABSTRACT

The CRISPR/Cas9 technology revolutionizes targeted gene knockout in diverse organisms including plants. However, screening edited alleles, particularly those with multiplex editing, from herbicide- or antibiotic-resistant transgenic plants and segregating out the Cas9 transgene represent two laborious processes. Current solutions to facilitate these processes rely on different selection markers. Here, by taking advantage of the opposite functions of a d-amino acid oxidase (DAO) in detoxifying d-serine and in metabolizing non-toxic d-valine to a cytotoxic product, we develop a DAO-based selection system that simultaneously enables the enrichment of multigene edited alleles and elimination of Cas9-containing progeny in Arabidopsis thaliana. Among five DAOs tested in Escherichia coli, the one encoded by Trigonopsis variabilis (TvDAO) could confer slightly stronger d-serine resistance than other homologs. Transgenic expression of TvDAO in Arabidopsis allowed a clear distinction between transgenic and non-transgenic plants in both d-serine-conditioned positive selection and d-valine-conditioned negative selection. As a proof of concept, we combined CRISPR-induced single-strand annealing repair of a dead TvDAO with d-serine-based positive selection to help identify transgenic plants with multiplex editing, where d-serine-resistant plants exhibited considerably higher co-editing frequencies at three endogenous target genes than those selected by hygromycin. Subsequently, d-valine-based negative selection successfully removed Cas9 and TvDAO transgenes from the survival offspring carrying inherited mutations. Collectively, this work provides a novel strategy to ease CRISPR mutant identification and Cas9 transgene elimination using a single selection marker, which promises more efficient and simplified multiplex CRISPR editing in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00132-6.

10.
Front Immunol ; 15: 1403752, 2024.
Article in English | MEDLINE | ID: mdl-38975343

ABSTRACT

Type 1 diabetes (T1D) arises from autoimmune-mediated destruction of insulin-producing pancreatic beta cells. Recent advancements in the technology of generating pancreatic beta cells from human pluripotent stem cells (SC-beta cells) have facilitated the exploration of cell replacement therapies for treating T1D. However, the persistent threat of autoimmunity poses a significant challenge to the survival of transplanted SC-beta cells. Genetic engineering is a promising approach to enhance immune resistance of beta cells as we previously showed by inactivating the Renalase (Rnls) gene. Here, we demonstrate that Rnls loss of function in beta cells shapes autoimmunity by mediating a regulatory natural killer (NK) cell phenotype important for the induction of tolerogenic antigen-presenting cells. Rnls-deficient beta cells mediate cell-cell contact-independent induction of hallmark anti-inflammatory cytokine Tgfß1 in NK cells. In addition, surface expression of regulatory NK immune checkpoints CD47 and Ceacam1 is markedly elevated on beta cells deficient for Rnls. Altered glucose metabolism in Rnls mutant beta cells is involved in the upregulation of CD47 surface expression. These findings are crucial to better understand how genetically engineered beta cells shape autoimmunity, giving valuable insights for future therapeutic advancements to treat and cure T1D.


Subject(s)
Autoimmunity , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Killer Cells, Natural , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Mice , Diabetes Mellitus, Type 1/immunology , Humans , CD47 Antigen/metabolism , CD47 Antigen/genetics , CD47 Antigen/immunology , Transforming Growth Factor beta1/metabolism , Mice, Inbred NOD , Monoamine Oxidase
11.
Expert Rev Anti Infect Ther ; : 1-12, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38975666

ABSTRACT

BACKGROUND: The potential of ursodeoxycholic acid (UDCA) in inhibiting angiotensin-converting enzyme 2 was demonstrated. However, conflicting evidence emerged regarding the association between UDCA and COVID-19 outcomes, prompting the need for a comprehensive investigation. RESEARCH DESIGN AND METHODS: Patients diagnosed with COVID-19 infection were retrospectively analyzed and divided into two groups: the UDCA-treated group and the control group. Kaplan-Meier recovery analysis and Cox proportional hazards models were used to evaluate the recovery time and hazard ratios. Additionally, study-level pooled analyses for multiple clinical outcomes were performed. RESULTS: In the 115-patient cohort, UDCA treatment was significantly associated with a reduced recovery time. The subgroup analysis suggests that the 300 mg subgroup had a significant (adjusted hazard ratio: 1.63 [95% CI, 1.01 to 2.60]) benefit with a shorter duration of fever. The results of pooled analyses also show that UDCA treatment can significantly reduce the incidence of severe/critical diseases in COVID-19 (adjusted odds ratio: 0.68 [95% CI, 0.50 to 0.94]). CONCLUSIONS: UDCA treatment notably improves the recovery time following an Omicron strain infection without observed safety concerns. These promising results advocate for UDCA as a viable treatment for COVID-19, paving the way for further large-scale and prospective research to explore the full potential of UDCA.

12.
J Am Chem Soc ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970779

ABSTRACT

Sulfur hexafluoride (SF6) is extensively employed in the power industry. However, its emissions significantly contribute to the greenhouse effect. The direct recovery of high purity SF6 from industrial waste gases would benefit its sustainable use, yet this represents a considerable challenge. Herein, we report the enrichment of SF6 from SF6/N2 mixtures via adsorptive separation in a stable Co(II)-pyrazolate MOF BUT-53 (BUT: Beijing University of Technology), which features dynamic molecular traps. BUT-53 exhibits an excellent SF6 adsorption uptake of 2.82 mmol/g at 0.1 bar and 298 K, as well as an unprecedented SF6/N2 (10:90) selectivity of 2485. Besides, the remarkable SF6/N2 selectivity of BUT-53 enables recovery of high purity (>99.9%) SF6 from a low concentration (10%) mixture through a breakthrough experiment. The excellent SF6/N2 separation efficiency was also well maintained under humid conditions (RH = 90%) over multiple cycles. Molecular simulation, single-crystal diffraction, and adsorption kinetics studies elucidate the associated adsorption mechanism and water tolerance.

13.
Acad Radiol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971660

ABSTRACT

RATIONALE AND OBJECTIVES: We explored the feasibility of using total tumor apparent diffusion coefficient (ttADC) histogram parameters to predict high-risk cytogenetic abnormalities (HRCA) in patients with multiple myeloma (MM) and compared the performance of an image prediction model based on these parameters with that of a combined prediction model based on these parameters and clinical indicators. METHODS: We retrospectively analyzed the parameters of the ttADC histogram based on whole-body diffusion-weighted images(WB-DWI) and clinical indicators in 92 patients with MM. The patients were divided into HRCA and non-HRCA groups according to the results of the fluorescence in situ hybridization. Logistic regression analysis was used to construct the image prediction and combined prediction models. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to evaluate the performance of the models to identify HRCA. The DeLong test was used to compare the AUC differences of each prediction model. RESULTS: Logistic regression analysis results revealed that the ttADC histogram parameter, ttADC entropy < 7.959 (OR: 39.167; 95% confidence interval [CI]: 3.891-394.208; P < 0.05), was an independent risk factor for HRCA. The image prediction model consisted of ttADC entropy and ttADC SD. The combined prediction model included ttADC entropy along with patient clinical indicators such as biological sex and M protein percentage. The AUCs of the image prediction and combined prediction models were 0.739 and 0.811, respectively (P < .05). The image prediction model showed a sensitivity of 73.9% and a specificity of 68.1%. The combined prediction model showed 82.6% sensitivity and 72.5% specificity. CONCLUSIONS: Using ttADC histogram parameters based on WB-DWI images to predict HRCA in patients with MM is feasible, and combining ttADC parameters with clinical indicators can achieve better predictive performance.

14.
medRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38978662

ABSTRACT

Traumatic brain injury (TBI) is a risk factor for neurodegeneration and cognitive decline, yet the underlying pathophysiologic mechanisms are incompletely understood. This gap in knowledge is in part related to the lack of analytic methods to account for cortical lesions in prior neuroimaging studies. The objective of this study was to develop a lesion detection tool and apply it to an investigation of longitudinal changes in brain structure among individuals with chronic TBI. We identified 24 individuals with chronic moderate-to-severe TBI enrolled in the Late Effects of TBI (LETBI) study who had cortical lesions detected by T1-weighted MRI at two time points. Initial MRI scans were performed more than 1-year post-injury and follow-up scans were performed 3.1 (IQR=1.7) years later. We leveraged FreeSurfer parcellations of T1-weighted MRI volumes and a recently developed super-resolution technique, SynthSR, to identify cortical lesions in this longitudinal dataset. Trained raters received the data in a randomized order and manually corrected the automated lesion segmentation, yielding a final lesion mask for each scan at each timepoint. Lesion volume significantly increased between the two time points with a median volume change of 3.2 (IQR=5.9) mL (p<0.001), and the increases significantly exceeded the possible variance in lesion volume changes due to manual tracing errors (p < 0.001). Lesion volume significantly expanded longitudinally in 23 of 24 subjects, with all FDR corrected p-values ≤ 0.02. Inter-scan duration was not associated with the magnitude of lesion growth. We also demonstrated that the semi-automated tool showed a high level of accuracy compared to "ground truth" manual lesion segmentation. Semi-automated lesion segmentation is feasible in TBI studies and creates opportunities to elucidate mechanisms of post-traumatic neurodegeneration.

15.
bioRxiv ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38979320

ABSTRACT

m 6 A RNA methylation suppresses the immunostimulatory potential of endogenous RNA. Deficiency of m 6 A provokes inflammatory responses and cell death, but the underlying mechanisms remain elusive. Here we showed that the noncoding RNA 7SK gains immunostimulatory potential upon m 6 A depletion and subsequently activates the RIG-I/MAVS axis to spark interferon (IFN) signaling cascades. Concomitant excess of IFN and m 6 A deficiency synergistically facilitate the formation of RNA G-quadruplexes (rG4) to promote ZBP1-mediated necroptotic cell death. Collectively, our findings delineate a hitherto uncharacterized mechanism that links m 6 A dysregulation with ZBP1 activity in triggering inflammatory cell death.

16.
Adv Healthc Mater ; : e2401778, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979867

ABSTRACT

Perylenequinonoid natural products are a class of photosensitizers (PSs) that exhibit high reactive oxygen species (ROS) generation and excellent activity for Type I/Type II dual photodynamic therapy. However, their limited activity against gram-negative bacteria and poor water solubility significantly restrict their potential in broad-spectrum photodynamic antimicrobial therapy (PDAT). Herein, a general approach to overcome the limitations of perylenequinonoid photosensitizers (PQPSs) in PDAT by utilizing a macrocyclic supramolecular carrier is presented. Specifically, AnBox·4Cl, a water-soluble cationic cyclophane, is identified as a universal macrocyclic host for PQPSs such as elsinochrome C, hypocrellin A, hypocrellin B, and hypericin, forming 1:1 host-guest complexes with high binding constants (≈107 m -1) in aqueous solutions. Each AnBox·4Cl molecule carries four positive charges that promote strong binding with the membrane of gram-negative bacteria. As a result, the AnBox·4Cl-PQPS complexes can effectively anchor on the surfaces of gram-negative bacteria, while the PQPSs alone cannot. In vitro and in vivo experiments demonstrate that these supramolecular PSs have excellent water solubility and high ROS generation, with broad-spectrum PDAT effect against both gram-negative and gram-positive bacteria. This work paves a new path to enhance PDAT by showcasing an efficient approach to improve PQPSs' water solubility and killing efficacy for gram-negative bacteria.

17.
Ann Hum Biol ; 51(1): 2369274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38979932

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a common chronic joint disease that significantly affects an individual's quality-of-life and frailty has become one of the common complications in OA patients as the disease progresses. The relationship between dietary patterns is not clear. METHODS: All participants are from the National Health and Nutrition Examination Survey (NHANES) and have been diagnosed with OA. The dietary inflammation index (DII) is calculated based on the dietary intake reported by the participants. Logistic regression analysis is used to investigate the relationship between DII and frailty. Restricted cubic splines are utilised to explore their nonlinear relationship. Mediation analysis is conducted to explore the role of inflammation in this relationship. RESULTS: A total of 2,530 OA patients were included in the study, with an average age of 64.46 (12.67) years. After adjusting for covariates, for each one standard deviation increase in DII, the risk of frailty increased by 15% (OR = 1.15, 95% CI = 1.03-1.28). Compared to patients with DII < -1, patients with DII > 1 had a significantly higher risk of frailty (OR = 1.50, 95% CI = 1.05-2.14). CONCLUSIONS: The findings of this study indicate a positive association between DII and the risk of frailty in OA patients. These results underscore the potential impact of dietary interventions in improving the quality-of-life for OA patients.


Subject(s)
Diet , Frailty , Inflammation , Nutrition Surveys , Osteoarthritis , Humans , Male , Female , Frailty/etiology , Middle Aged , Inflammation/etiology , Aged
18.
Exp Hematol Oncol ; 13(1): 64, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951845

ABSTRACT

Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.

19.
J Asian Nat Prod Res ; : 1-16, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975978

ABSTRACT

The flavonoid compound chinonin is one of the main active components of Rhizoma anemarrhena with multiple activities, including anti-inflammatory and antioxidant properties, protection of mitochondrial function and regulation of immunity. In this paper, we reviewed recent research progress on the protective effect of chinonin on brain injury in neurological diseases. "Chinonin" OR "Mangiferin" AND "Nervous system diseases" OR "Neuroprotection" was used as the terms for search in PumMed. After discarding duplicated and irrelevant articles, a total of 23 articles relevant to chinonin published between 2012 and 2023 were identified in our study.

20.
Int J Biol Macromol ; 275(Pt 1): 133232, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960234

ABSTRACT

Spindle migration and assembly regulates asymmetric oocyte division, which is essential for fertility. Fbxo28, as a member of SCF (Skp1-Cul1-F-box) ubiquitin E3 ligases complex, is specifically expressed in oocytes. However, little is known about the functions of Fbxo28 in spindle assembly and migration during oocyte meiosis I. In present study, microinjection with morpholino oligonucleotides and exogenous mRNA for knockdown and rescue experiments, and immunofluorescence staining, western blot, timelapse confocal microscopy and chromosome spreading were utilized to explore the roles of Fbxo28 in asymmetric division during meiotic maturation. Our data suggested that Fbxo28 mainly localized at chromosomes and acentriolar microtubule-organizing centers (aMTOCs). Depletion of Fbxo28 did not affect polar body extrusion but caused defects in spindle morphology and migration, indicative of the failure of asymmetric division. Moreover, absence of Fbxo28 disrupted both cortical and cytoplasmic actin assembly and decreased the expression of ARPC2 and ARP3. These defects could be rescued by exogenous Fbxo28-myc mRNA supplement. Collectively, this study demonstrated that Fbxo28 affects spindle morphology and actin-based spindle migration during mouse oocyte meiotic maturation.

SELECTION OF CITATIONS
SEARCH DETAIL
...