Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.552
Filter
1.
J Med Virol ; 96(7): e29809, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016466

ABSTRACT

Pancreatic cancer (PC) is a highly aggressive malignancy with a poor prognosis, making early diagnosis crucial for improving patient outcomes. While the gut microbiome, including bacteria and viruses, is believed to be essential in cancer pathogenicity, the potential contribution of the gut virome to PC remains largely unexplored. In this study, we conducted a comparative analysis of the gut viral compositional and functional profiles between PC patients and healthy controls, based on fecal metagenomes from two publicly available data sets comprising a total of 101 patients and 82 healthy controls. Our results revealed a decreasing trend in the gut virome diversity of PC patients with disease severity. We identified significant alterations in the overall viral structure of PC patients, with a meta-analysis revealing 219 viral operational taxonomic units (vOTUs) showing significant differences in relative abundance between patients and healthy controls. Among these, 65 vOTUs were enriched in PC patients, and 154 were reduced. Host prediction revealed that PC-enriched vOTUs preferentially infected bacterial members of Veillonellaceae, Enterobacteriaceae, Fusobacteriaceae, and Streptococcaceae, while PC-reduced vOTUs were more likely to infect Ruminococcaceae, Lachnospiraceae, Clostridiaceae, Oscillospiraceae, and Peptostreptococcaceae. Furthermore, we constructed random forest models based on the PC-associated vOTUs, achieving an optimal average area under the curve (AUC) of up to 0.879 for distinguishing patients from controls. Through additional 10 public cohorts, we demonstrated the reproducibility and high specificity of these viral signatures. Our study suggests that the gut virome may play a role in PC development and could serve as a promising target for PC diagnosis and therapeutic intervention. Future studies should further explore the underlying mechanisms of gut virus-bacteria interactions and validate the diagnostic models in larger and more diverse populations.


Subject(s)
Feces , Gastrointestinal Microbiome , Metagenomics , Pancreatic Neoplasms , Virome , Humans , Pancreatic Neoplasms/virology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/microbiology , Gastrointestinal Microbiome/genetics , Metagenomics/methods , Feces/virology , Feces/microbiology , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Metagenome , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Middle Aged , Male , Female , Aged , Case-Control Studies
2.
J Clin Anesth ; 97: 111545, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971135

ABSTRACT

STUDY OBJECTIVE: The aim of this study was to evaluate the accuracy of lung recruitment maneuver induced stroke volume variation (ΔSVLRM) in predicting fluid responsiveness in mechanically ventilated adult patients by systematic review and meta-analysis. METHODS: A comprehensive electronic search of relevant literature was conducted in PubMed, Web of Science, Cochrane Library, Ovid Medline, Embase and Chinese databases (including China National Knowledge Infrastructure, Wanfang and VIP databases). Review Manager 5.4, Meta-DiSc 1.4 and STATA 16.0 were selected for data analysis, and QUADAS-2 tool was used for quality assessment. Data from selected studies were pooled to obtain sensitivity, specificity, diagnostic likelihood ratio (DLR) of positive and negative, diagnostic odds ratio (DOR), and summary receiver operating characteristic curve. RESULTS: A total of 6 studies with 256 patients were enrolled through March 2024. The risk of bias and applicability concerns for each included study were low, and there was no significant publication bias. There was moderate to substantial heterogeneity for the non-threshold effect, but not for the threshold effect. The combined sensitivity and specificity were 0.84 (95% CI, 0.77-0.90) and 0.79 (95% CI, 0.70-0.86), respectively. The DOR and the area under the curve (AUC) were 22.15 (95%CI, 7.62-64.34) and 0.90 (95% CI, 0.87-0.92), respectively. The positive and negative predictive values of DLR were 4.53 (95% CI, 2.50-8.18) and 0.19 (95% CI, 0.11-0.35), respectively. Fagan's nomogram showed that with a pre-test probability of 52%, the post-test probability reached 83% and 17% for the positive and negative tests, respectively. CONCLUSIONS: Based on the currently available evidence, ΔSVLRM has a good diagnostic value for predicting the fluid responsiveness in adult patients undergoing mechanical ventilation. Given the heterogeneity and limitations of the published data, further studies with large sample sizes and different clinical settings are needed to confirm the diagnostic value of ΔSVLRM in predicting fluid responsiveness. PROSPERO registration number: CRD42023490598.

3.
Beilstein J Org Chem ; 20: 1468-1475, 2024.
Article in English | MEDLINE | ID: mdl-38978743

ABSTRACT

A catalyst- and additive-free synthesis of 2-benzyl N-substituted anilines from (E)-2-arylidene-3-cyclohexenones and primary amines has been reported. The reaction proceeds smoothly through a sequential imine condensation-isoaromatization pathway, affording a series of synthetically useful aniline derivatives in acceptable to high yields. Mild reaction conditions, no requirement of metal catalysts, operational simplicity and the potential for scale-up production are some of the highlighted advantages of this transformation.

4.
Front Surg ; 11: 1371588, 2024.
Article in English | MEDLINE | ID: mdl-38978991

ABSTRACT

Background: Postoperative pain is a common occurrence in pediatric patients following craniotomy, often leading to negative outcomes. Intravenous dexmedetomidine and lidocaine are commonly used adjuvant medicines in general anesthesia to reduce perioperative opioid consumption and relieve postoperative pain in adults. While they show promise for use in pediatrics, the evidence of their application in pediatric craniotomy patients is limited. Therefore, we aimed to compare the effects of dexmedetomidine and lidocaine on postoperative pain in pediatric patients following craniotomy. Methods: We conducted a randomized, double-blind, single-center trial on children scheduled for craniotomy. The 255 recruited participants aged 1-12 years were randomly assigned to intraoperatively receive a loading intravenous dose of either dexmedetomidine 1 µg·kg-1 or lidocaine 2 mg·kg-1 or normal saline for 15 min followed by dexmedetomidine 0.5 µg·kg-1·h-1 or lidocaine 1 mg·kg-1·h-1 or normal saline until the sutures of endocranium were completed. The primary outcome was the cumulative sufentanil consumption within 24 h post-surgery. Results: A total of 241 patients were included in the statistical analysis. The primary outcome did not show any significant differences among the three groups (median (IQR) lidocaine group: 3.36 (1.32-5.64) µg vs. dexmedetomidine group: 3.12 (1.36-6.39) µg vs. control group 3.46 (1.77-7.62) µg, p = 0.485). Among the secondary outcomes, there was a statistically significant but small reduction in sufentanil consumption within 2 h, postoperative FLACC/WBFS/NRS pain scores within 4 h after surgery and postoperative Ramsay sedation scores in dexmedetomidine group (p < 0.05). Regarding postoperative complications, the incidence of electrolyte disturbance within 24 and 48 h after surgery was significantly higher in control group compared to the other two groups. There were no significant differences in intraoperative opioid consumption, postoperative frequency of remedy medication, or length of hospitalization among the three groups. No adverse events related to lidocaine or dexmedetomidine were observed. Conclusions: There were no significant differences in the primary outcome among the three groups. Although dexmedetomidine showed some benefits in reducing postoperative opioid consumption within the first 2 h and pain intensity within the first 4 h post-surgery, these findings should be interpreted with caution. Further research is required to comprehensively assess the outcomes and determine the optimal administration strategy. Clinical Trial Registration: [http://www.chictr.org.cn/index.aspx], identifier [ChiCTR1800019411].

5.
Epilepsy Behav ; 158: 109916, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002276

ABSTRACT

BACKGROUND: Branched-chain amino acids (BCAAs) have been affected epilepsy, yet conclusions remain inconclusive, lacking causal evidence regarding whether BCAAs affect epilepsy. Systematic exploration of the causal relationship between BCAAs and epilepsy could hand out new ideas for the treatment of epilepsy. METHODS: Utilizing bidirectional Mendelian randomization (MR) study, we investigated the causal relationship between BCAA levels and epilepsy. BCAA levels from genome-wide association studies (GWAS), including total BCAAs, leucine levels, isoleucine levels, and valine levels, were employed. Causal relationships were explored applying the method of inverse variance-weighted (IVW) and MR-Egger, followed by sensitivity analyses of the results to evaluate heterogeneity and pleiotropy. RESULTS: Through strict genetic variant selection, we find some related SNPs, total BCAA levels (9), leucine levels (11), isoleucine levels (7), and valine levels (6) as instrumental variables for our MR analysis. Following IVW and sensitivity analysis, total BCAAs levels (OR = 1.14, 95 % CI = 1.019 âˆ¼ 1.285, P = 0.022) and leucine levels (OR = 1.15, 95 % CI = 1.018 âˆ¼ 1.304, P = 0.025) had significant correlation with epilepsy. CONCLUSIONS: There exists a causal relationship between the levels of total BCAAs and leucine with epilepsy, offering the new ideas into epilepsy potential mechanisms, holding significant implications for its prevention and treatment.

6.
Alzheimers Dement (Amst) ; 16(3): e12613, 2024.
Article in English | MEDLINE | ID: mdl-38966622

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is often misclassified in electronic health records (EHRs) when relying solely on diagnosis codes. This study aimed to develop a more accurate, computable phenotype (CP) for identifying AD patients using structured and unstructured EHR data. METHODS: We used EHRs from the University of Florida Health (UFHealth) system and created rule-based CPs iteratively through manual chart reviews. The CPs were then validated using data from the University of Texas Health Science Center at Houston (UTHealth) and the University of Minnesota (UMN). RESULTS: Our best-performing CP was "patient has at least 2 AD diagnoses and AD-related keywords in AD encounters," with an F1-score of 0.817 at UF, 0.961 at UTHealth, and 0.623 at UMN, respectively. DISCUSSION: We developed and validated rule-based CPs for AD identification with good performance, which will be crucial for studies that aim to use real-world data like EHRs. Highlights: Developed a computable phenotype (CP) to identify Alzheimer's disease (AD) patients using EHR data.Utilized both structured and unstructured EHR data to enhance CP accuracy.Achieved a high F1-score of 0.817 at UFHealth, and 0.961 and 0.623 at UTHealth and UMN.Validated the CP across different demographics, ensuring robustness and fairness.

7.
medRxiv ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38978683

ABSTRACT

We investigated the risks of post-acute and chronic adverse kidney outcomes of SARS-CoV-2 infection in the pediatric population via a retrospective cohort study using data from the RECOVER program. We included 1,864,637 children and adolescents under 21 from 19 children's hospitals and health institutions in the US with at least six months of follow-up time between March 2020 and May 2023. We divided the patients into three strata: patients with pre-existing chronic kidney disease (CKD), patients with acute kidney injury (AKI) during the acute phase (within 28 days) of SARS-CoV-2 infection, and patients without pre-existing CKD or AKI. We defined a set of adverse kidney outcomes for each stratum and examined the outcomes within the post-acute and chronic phases after SARS-CoV-2 infection. In each stratum, compared with the non-infected group, patients with COVID-19 had a higher risk of adverse kidney outcomes. For patients without pre-existing CKD, there were increased risks of CKD stage 2+ (HR 1.20; 95% CI: 1.13-1.28) and CKD stage 3+ (HR 1.35; 95% CI: 1.15-1.59) during the post-acute phase (28 days to 365 days) after SARS-CoV-2 infection. Within the post-acute phase of SARS-CoV-2 infection, children and adolescents with pre-existing CKD and those who experienced AKI were at increased risk of progression to a composite outcome defined by at least 50% decline in estimated glomerular filtration rate (eGFR), eGFR <15 mL/min/1.73m2, End Stage Kidney Disease diagnosis, dialysis, or transplant.

8.
Int Immunopharmacol ; 138: 112567, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38950458

ABSTRACT

BACKGROUND: Imbalanced intestinal microbiota and damage to the intestinal barrier contribute to the development of necrotizing enterocolitis (NEC). Autoinducer-2 (AI-2) plays a crucial role in repairing intestinal damage and reducing inflammation. OBJECTIVE: This study aimed to investigate the impact of AI-2 on the expression of intestinal zonula occludens-1 (ZO-1) and occludin proteins in NEC. We evaluated its effects in vivo using NEC mice and in vitro using lipopolysaccharide (LPS)-stimulated intestinal cells. METHODS: Pathological changes in the intestines of neonatal mice were assessed using histological staining and scoring. Cell proliferation was measured using the cell counting kit-8 (CCK-8) assay to determine the optimal conditions for LPS and AI-2 interventions. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to analyze the mRNA levels of matrix metalloproteinase-3 (MMP3), protease activated receptor-2 (PAR2), interleukin-1ß (IL-1ß), and IL-6. Protein levels of MMP3, PAR2, ZO-1, and occludin were evaluated using western blot, immunohistochemistry, or immunofluorescence. RESULTS: AI-2 alleviated NEC-induced intestinal damage (P < 0.05) and enhanced the proliferation of damaged IEC-6 cells (P < 0.05). AI-2 intervention reduced the mRNA and protein expressions of MMP3 and PAR2 in intestinal tissue and cells (P < 0.05). Additionally, it increased the protein levels of ZO-1 and occludin (P < 0.05), while reducing IL-1ß and IL-6 mRNA expression (P < 0.05). CONCLUSION: AI-2 intervention enhances the expression of tight junction proteins (ZO-1 and occludin), mitigates intestinal damage in NEC neonatal mice and IEC-6 cells, potentially by modulating PAR2 and MMP3 signaling. AI-2 holds promise as a protective intervention for NEC. AI-2 plays a crucial role in repairing intestinal damage and reducing inflammation.

9.
Hum Cell ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012569

ABSTRACT

In this study, a novel pancreatic cancer cell line, termed pancreatic ductal adenocarcinoma (PDAC)-X3 cell line, was successfully derived from the primary tumor. Comprehensive analyses of its malignant phenotype, molecular properties, specific biomarkers, and histological features confirmed that PDAC-X3 cells serve as a valuable model for investigating the underlying mechanisms driving pancreatic carcinogenesis and advancing potential therapeutic strategies. The newly established cell line was continuously cultured for over 12 months and was stably passaged through more than 50 generations. Morphologically, PDAC-X3 cells displayed characteristics typical of epithelial tumors. The population doubling time for PDAC-X3 cells was determined to be 50 h. Karyotype analysis revealed that 75% of PDAC-X3 cells presented as hypotriploid, while 25% were sub-tetraploid, with representative karyotypes being 53 and XY der (1) inv (9) der (22). In suspension culture, PDAC-X3 cells efficiently formed organoids. Upon inoculation into BALB/C nude mice, these cells initiated the development of xenograft tumors, achieving a tumor formation rate of 33%. Morphologically, these xenografted tumors closely resembled the primary tumor. Drug sensitivity assays indicated that PDAC-X3 cells exhibited resistance to oxaliplatin but demonstrated sensitivity to 5-Fluorouracil (5-FU), gemcitabine, and paclitaxel. Immunohistochemical analysis revealed that CK7, CK19, E-cadherin, Vimentin, CA19-9 were positively expressed in PDAC-X3 cells. Meanwhile, the expression rate for Ki-67 was 30%, and that for CEA was not detected. Our findings underscore that PDAC-X3 represents a novel pancreatic cancer cell line, positioning it as a valuable model for basic research and the advancement of therapeutic strategies against pancreatic cancer.

10.
BMC Cardiovasc Disord ; 24(1): 351, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987672

ABSTRACT

Diabetic cardiomyopathy (DCM) is a chronic disease caused by diabetes mellitus, which is recognized as a worldwide challenging disease. This study aimed to investigate the role and the potential mechanism of knocking down the NACHT-, LRR- and PYD domains-containing protein 3 (NLRP3), an inflammasome associated with onset and progression of various diseases, on high glucose or diabetes -induced cardiac cells pyroptosis and ferroptosis, two regulated non-necrosis cell death modalities discovered recent years. In the present study, both in vivo and in vitro studies were conducted simultaneously. Diabetic rats were induced by 55 mg/kg intraperitoneal injection of streptozotocin (STZ). Following the intraperitoneal injection of MCC950 (10 mg/kg), On the other hand, the DCM model in H9C2 cardiac cells was simulated with 35 mmol/L glucose and a short hairpin RNA vector of NLRP3 were transfected to cells. The results showed that in vivo study, myocardial fibers were loosely arranged and showed inflammatory cell infiltration, mitochondrial cristae were broken and the GSDMD-NT expression was found notably increased in the DM group, while the protein expressions of xCT and GPX4 was significantly decreased, both of which were reversed by MCC950. High glucose reduced the cell viability and ATP level in vitro, accompanied by an increase in LDH release. All of the above indicators were reversed after NLRP3 knockdown compared with the HG treated alone. Moreover, the protein expressions of pyroptosis- and ferroptosis-related fators were significantly decreased or increased, consistent with the results shown by immunofluorescence. Furthermore, the protective effects of NLRP3 knockdown against HG were reversed following the mtROS agonist rotenone (ROT) treatment. In conclusion, inhibition of NLRP3 suppressed DM-induced myocardial injury. Promotion of mitochondrial ROS abolished the protective effect of knockdown NLRP3, and induced the happening of pyroptosis and ferroptosis. These findings may present a novel therapeutic underlying mechanism for clinical diabetes-induced myocardial injury treatment.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ferroptosis , Gene Knockdown Techniques , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Ferroptosis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Cell Line , Rats, Sprague-Dawley , Rats , Signal Transduction , Reactive Oxygen Species/metabolism , Inflammasomes/metabolism , Sulfonamides/pharmacology , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Gasdermins
11.
Chem Commun (Camb) ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994588

ABSTRACT

In pursuit of global carbon neutrality, countries are intensifying their efforts to harness clean energy sources. Hydrogen emerges as a superior alternative to traditional fossil fuels and plays a crucial role in the global energy shift. Liquid Organic Hydrogen Carrier (LOHC) systems are lauded for their high hydrogen storage capacity, ease of handling, and safe and efficient transportation, positioning them as effective solutions for extensive hydrogen storage and international distribution. Nevertheless, the dehydrogenation of hydrogen-rich LOHCs is slow, requiring high temperatures and substantial energy inputs. Addressing these challenges by reducing energy demands and improving dehydrogenation rates is essential for advancing LOHC technology. This paper comprehensively examines various LOHC systems, focusing on the selection of carriers and dehydrogenation catalysts, and their dehydrogenation efficacy. It also highlights our recent contributions in photocatalytic LOHC and outlines future research directions to enhance LOHC technology.

12.
J Agric Food Chem ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990698

ABSTRACT

As a food contaminant that can be quickly absorbed through the gastrointestinal system, furan has been shown to disrupt the intestinal flora and barrier. Investigation of the intestinal toxicity mechanism of furan is of great significance to health. We previously identified the regulatory impact of salidroside (SAL) against furan-provoked intestinal damage, and the present work further explored whether the alleviating effect of SAL against furan-caused intestinal injury was based on the intestinal flora; three models, normal, pseudo-germ-free, and fecal microbiota transplantation (FMT), were established, and the changes in intestinal morphology, barrier, and inflammation were observed. Moreover, 16S rDNA sequencing observed the variation of the fecal flora associated with inflammation and short-chain fatty acids (SCFAs). Results obtained from the LC-MS/MS suggested that SAL increased furan-inhibited SCFA levels, activated the mRNA expressions of SCFA receptors (GPR41, GPR43, and GPR109A), and inhibited the furan-activated TLR4/MyD88/NF-κB signaling. Analysis of protein-protein interaction further confirmed the aforementioned effects of SAL, which inhibited furan-induced barrier damage and intestinal inflammation.

14.
BMC Cancer ; 24(1): 800, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965506

ABSTRACT

Drug resistance remains a significant challenge in the treatment of pancreatic cancer. The development of drug-resistant cell lines is crucial to understanding the underlying mechanisms of resistance and developing novel drugs to improve clinical outcomes. Here, a novel pancreatic cancer cell line, PDAC-X1, derived from Chinese patients has been established. PDAC-X1 was characterized by the immune phenotype, biology, genetics, molecular characteristics, and tumorigenicity. In vitro analysis revealed that PDAC-X1 cells exhibited epithelial morphology and cell markers (CK7 and CK19), expressed cancer-associated markers (E-cadherin, Vimentin, Ki-67, CEA, CA19-9), and produced pancreatic cancer-like organs in suspension culture. In vivo analysis showed that PDAC-X1 cells maintained tumorigenicity with a 100% tumor formation rate. This cell line exhibited a complex karyotype, dominated by subtriploid karyotypes. In addition, PDAC-X1 cells exhibited intrinsic multidrug resistance to multiple drugs, including gemcitabine, paclitaxel, 5-fluorouracil, and oxaliplatin. In conclusion, the PDAC-X1 cell line has been established and characterized, representing a useful and valuable preclinical model to study the underlying mechanisms of drug resistance and develop novel drug therapeutics to improve patient outcomes.


Subject(s)
Carcinoma, Pancreatic Ductal , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Animals , Mice , Drug Resistance, Multiple/genetics , Xenograft Model Antitumor Assays , Male , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use
15.
Allergol Immunopathol (Madr) ; 52(4): 84-90, 2024.
Article in English | MEDLINE | ID: mdl-38970270

ABSTRACT

PURPOSE: To investigate the effect of metformin on gut microbiota imbalance in patients with type 2 diabetes mellitus (T2DM), and the value of probiotic supplementation. METHODS: A total of 84 newly diagnosed T2DM patients were randomly divided into probiotics group, metformin group, and control group, with 28 patients in each group. The blood glucose control, islet function, gut microbiota, and inflammatory factors were compared between three groups. RESULTS: After 3 months of treatment, fasting plasma glucose (FPG), 2-h postprandial plasma glucose (2-h PG), and glycosylated hemoglobin A1c (HbA1c) were evidently decreased in both probiotics and metformin groups (P < 0.05) and were lower than that in the control group prior to treatment. Besides, FPG, 2-h PG, and HbA1c were lower in the metformin group than that in the control group. FPG, 2-h PG, and HbA1c were further lower in the probiotic group than in the metformin group (P < 0.05). Fasting insulin (FINS) and islet ß cell (HOMA-ß) -function were dramatically increased in the same group (P < 0.05), while insulin-resistant islet ß cells (HOMA-IR) were significantly lower in the same group (P < 0.05); FINS and HOMA-ß were significantly higher, while HOMA-IR was significantly lower (P < 0.05) in both groups than in the control group prior to treatment. HOMA-IR was also lower in the probiotic group than in the metformin group after treatment (P < 0.05); the number of lactobacilli and bifidobacteria increased (P < 0.05) in both probiotic and metformin groups than in the control group prior to treatment, and the number of Enterobacteriaceae and Enterococcus was lower in the control group prior to treatment (P < 0.05). In addition, the number of lactobacilli and bifidobacteria was higher and the number of enterobacteria and enterococci was lower in the probiotic group than that in the metformin group after treatment, and the differences were statistically significant (P < 0.05). Lipopolysaccharide (LPS), interleukin 6 (IL-6), and C-reactive protein (CRP) levels were lower in both probiotic and metformin groups (P < 0.05). The serum LPS, IL-6, and CRP levels were lower in both probiotic and metformin groups, compared to the control group prior to the treatment (P < 0.05). CONCLUSION: Metformin while treating T2DM assists in improving the imbalance of gut microbiota.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Glycated Hemoglobin , Hypoglycemic Agents , Metformin , Probiotics , Humans , Metformin/pharmacology , Metformin/administration & dosage , Probiotics/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Male , Female , Middle Aged , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Glycated Hemoglobin/metabolism , Blood Glucose/drug effects , Adult , Dietary Supplements , Insulin/blood , Aged
16.
Phytother Res ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973263

ABSTRACT

Ferroptosis is a form of iron-dependent regulatory cell death that is related to the pathogenesis and progression of various cardiovascular diseases, such as arrhythmia, diabetic cardiomyopathy, myocardial infarction, myocardial ischemia/reperfusion injury, and heart failure. This makes it a promising therapeutic target for cardiovascular diseases. It is interesting that a significant number of cardiovascular disease treatment drugs derived from phytochemicals have been shown to target ferroptosis, thus producing cardioprotective effects. This study offers a concise overview of the initiation and control mechanisms of ferroptosis. It discusses the core regulatory factors of ferroptosis as potential new therapeutic targets for various cardiovascular diseases, elucidating how ferroptosis influences the progression of cardiovascular diseases. In addition, this review systematically summarizes the regulatory effects of phytochemicals on ferroptosis, emphasizing their potential mechanisms and clinical applications in treating cardiovascular diseases. This study provides a reference for further elucidating the molecular mechanisms of phytochemicals in treating cardiovascular diseases. This may accelerate their application in the treatment of cardiovascular diseases and is worth further research in this field.

17.
Int J Phytoremediation ; : 1-10, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973396

ABSTRACT

Vesicular sequestration is a potential strategy for enhancing plant tolerance to cadmium (Cd) and arsenic (As). In this study, the ectopic overexpression of yeast-derived ScSMF2 in Arabidopsis thaliana was found to enhance the accumulation and tolerance of Cd and As in transgenic plants. ScSMF2 was localized on vacuole membranes and formed puncta structures in plant cells when agro-infiltrated for transient expression. Transgenic Arabidopsis showed less retardation on root elongation and shoot weight and more accumulation of Cd, As (III) and As (V) when cultured on medium containing Cd or As. Overexpression of ScSMF2 promoted accumulation of Cd and arsenic in transgenic Arabidopsis, which were over twice higher than in WT plants when cultured in soil. This study provides insights into the mechanisms involved in the vesicular sequestration of heavy metals in plant and presents a potential strategy for enhancing the phytoremediation capacity of plants toward heavy metals.


Ectopic overexpression of the yeast Mn2+ transporter SMF2 in Arabidopsis thaliana substantially boosts the accumulation and tolerance to Cd and As in plants. This augmentation is attributed to the enhanced efficacy of intracellular vesicle sequestration, thereby bolstering the capacity of plants to sequester and detoxify these toxic heavy metals. This investigation introduces a potential approach for cultivating plants with improved phytoremediation capabilities, thereby advancing eco-friendly and sustainable remediation initiatives against heavy metal pollution.

18.
Polymers (Basel) ; 16(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000744

ABSTRACT

Polyurethane (PU) is among the most universal polymers and has been extensively applied in many fields, such as construction, machinery, furniture, clothing, textile, packaging and biomedicine. Traditionally, as the main starting materials for PU, polyols deeply depend on petroleum stock. From the perspective of recycling and environmental friendliness, advanced PU synthesis, using diversified resources as feedstocks, aims to develop versatile products with excellent properties to achieve the transformation from a fossil fuel-driven energy economy to renewable and sustainable ones. This review focuses on the recent development in the synthesis and modification of PU by extracting value-added monomers for polyols from waste polymers and natural bio-based polymers, such as the recycled waste polymers: polyethylene terephthalate (PET), PU and polycarbonate (PC); the biomaterials: vegetable oil, lignin, cashew nut shell liquid and plant straw; and biomacromolecules: polysaccharides and protein. To design these advanced polyurethane formulations, it is essential to understand the structure-property relationships of PU from recycling polyols. In a word, this bottom-up path provides a material recycling approach to PU design for printing and packaging, as well as biomedical, building and wearable electronics applications.

19.
Article in English | MEDLINE | ID: mdl-38964862

ABSTRACT

BACKGROUND AND PURPOSE: Visualization of the extracranial trigeminal nerve is crucial to detect nerve pathologic alterations. This study aimed to evaluate visualization of the extracranial trigeminal nerve using 3D inversion recovery TSE with an improved motion-sensitized driven equilibrium (iMSDE) pulse. MATERIALS AND METHODS: In this prospective study, 35 subjects underwent imaging of the trigeminal nerve using conventional 3D inversion recovery TSE, 3D inversion recovery TSE with an iMSDE pulse, and contrast-enhanced 3D inversion recovery TSE. The visibility of 7 extracranial branches of the trigeminal nerve, venous/muscle suppression, and identification of the relationship between nerves and lesions were scored on a 5-point scale system. In addition, SNR, nerve-muscle contrast ratio, nerve-venous contrast ratio, nerve-muscle contrast-to-noise ratio, and nerve-venous contrast-to-noise ratio were calculated and compared. RESULTS: Images acquired with iMSDE 3D inversion recovery TSE had significantly higher nerve-muscle contrast ratio, nerve-venous contrast ratio, and nerve-to-venous contrast-to-noise ratio (all P < .001); improved venous/muscle suppression and clearer visualization of the trigeminal nerve branches except the ophthalmic nerve than with conventional 3D inversion recovery TSE (all P < .05). Compared with contrast-enhanced 3D inversion recovery TSE, images acquired with iMSDE 3D inversion recovery TSE had significantly higher SNR, nerve-muscle contrast ratio, and nerve-to-venous contrast-to-noise ratio (all P < .05), and demonstrated comparable diagnostic quality (scores ≥3) of the maxillary nerve, mandibular nerve, inferior alveolar nerve, lingual nerve, and masseteric nerve (P > .05). As for the identification of the relationship between nerves and lesions, iMSDE 3D inversion recovery TSE showed the highest scores among these 3 sequences (all P < .05). CONCLUSIONS: The iMSDE 3D inversion recovery TSE is a promising alternative to conventional 3D inversion recovery TSE and contrast-enhanced 3D inversion recovery TSE for visualization of the extracranial branches of trigeminal nerve in clinical practice.

20.
Front Public Health ; 12: 1402378, 2024.
Article in English | MEDLINE | ID: mdl-39022404

ABSTRACT

Introduction: This study aimed to explore the influence of Intimate Partner Violence (IPV) on depression, the mediating role of social support, and the moderating role of the Big Five personality traits in the relationship between social support and depression. Methods: Participants were recruited from Mainland China, using a stratified random sampling and quota sampling method. From June to August 2022, a diverse group of 21,916 participants (ranging from 12 to 100 years old) completed the Intimate Partner Violence Scale, Patient Health Questionnaire, Perceived Social Support Scale, and Big Five Inventory-Short Version. Results: IPV was significantly positively correlated with depression and significantly negatively correlated with perceived social support. Perceived social support plays a mediating role in the link between IPV and depression. Discussion: Healthcare workers should assess social support and provide adequate care or recommendations for increasing social support when patients with IPV report depressive symptoms. Patients can be coached by professionals to improve their resiliency by developing or nurturing more optimistic personality traits.


Subject(s)
Depression , Intimate Partner Violence , Personality , Social Support , Humans , Female , Adult , Intimate Partner Violence/psychology , Intimate Partner Violence/statistics & numerical data , Male , Middle Aged , Depression/psychology , China , Adolescent , Surveys and Questionnaires , Aged , Young Adult , Aged, 80 and over , Child
SELECTION OF CITATIONS
SEARCH DETAIL
...