Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.870
Filter
1.
Small Methods ; : e2301758, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967205

ABSTRACT

Organogenesis, the phase of embryonic development that starts at the end of gastrulation and continues until birth is the critical process for understanding cellular differentiation and maturation during organ development. The rapid development of single-cell transcriptomics technology has led to many novel discoveries in understanding organogenesis while also accumulating a large quantity of data. To fill this gap, OrganogenesisDB (http://organogenesisdb.com/), which is a comprehensive database dedicated to exploring cell-type identification and gene expression dynamics during organogenesis, is developed. OrganogenesisDB contains single-cell RNA sequencing data for more than 1.4 million cells from 49 published datasets spanning various developmental stages. Additionally, 3324 cell markers are manually curated for 1120 cell types across 9 human organs and 4 mouse organs. OrganogenesisDB leverages various analysis tools to assist users in annotating and understanding cell types at different developmental stages and helps in mining and presenting genes that exhibit specific patterns and play key regulatory roles during cell maturation and differentiation. This work provides a critical resource and useful tool for deciphering cell lineage determination and uncovering the mechanisms underlying organogenesis.

2.
Cell Biochem Biophys ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967902

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease with high death rates. Aucubin is an iridoid glycoside extracted from Eucommia ulmoides with antioxidative and anti-inflammatory properties in human diseases. This study aimed to investigate its specific function in mouse and cell models of COPD. METHODS: The COPD mouse model was established by exposing mice to a long-term cigarette smoke (CS). The number of inflammatory cells and the contents of inflammatory factors tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-8 in bronchoalveolar lavage fluid (BALF) of CS-exposed mice were measured. The levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and myeloperoxidase (MPO) in the lung tissues were estimated. Masson staining and hematoxylin-eosin (H&E) staining were utilized to evaluate pulmonary fibrosis and emphysema in CS-treated mice. Cell apoptosis in the lung tissues was estimated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Western blot was applied to quantify protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and apoptotic markers. COPD cell model was established by exposing mouse lung epithelial cells (MLE12) with cigarette smoke extract to further verify the properties of aucubin in vitro. RESULTS: Aucubin reduced the number of inflammatory cells and decreased the contents of TNF-α, IL-6, and IL-8 in BALF of CS-treated mice. The oxidative stress, lung emphysema, fibrosis, and lung cell apoptosis induced by CS exposure were ameliorated by aucubin administration. Aucubin activated the Nrf2/HO-1 signaling pathway in vitro and in vivo. Pretreatment with ML385, a specific Nrf2 inhibitor, antagonized the protective effects of aucubin on inflammation, oxidative stress, fibrosis, and cell apoptosis in COPD. CONCLUSION: Aucubin alleviates inflammation, oxidative stress, apoptosis, and pulmonary fibrosis in COPD mice and CSE-treated MLE12 cells by activating the Nrf2/HO-1 signaling pathway.

3.
BMC Cancer ; 24(1): 795, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961418

ABSTRACT

BACKGROUND: Oral Squamous Cell Carcinoma (OSCC) presents significant diagnostic challenges in its early and late stages. This study aims to utilize preoperative MRI and biochemical indicators of OSCC patients to predict the stage of tumors. METHODS: This study involved 198 patients from two medical centers. A detailed analysis of contrast-enhanced T1-weighted (ceT1W) and T2-weighted (T2W) MRI were conducted, integrating these with biochemical indicators for a comprehensive evaluation. Initially, 42 clinical biochemical indicators were selected for consideration. Through univariate analysis and multivariate analysis, only those indicators with p-values less than 0.05 were retained for model development. To extract imaging features, machine learning algorithms in conjunction with Vision Transformer (ViT) techniques were utilized. These features were integrated with biochemical indicators for predictive modeling. The performance of model was evaluated using the Receiver Operating Characteristic (ROC) curve. RESULTS: After rigorously screening biochemical indicators, four key markers were selected for the model: cholesterol, triglyceride, very low-density lipoprotein cholesterol and chloride. The model, developed using radiomics and deep learning for feature extraction from ceT1W and T2W images, showed a lower Area Under the Curve (AUC) of 0.85 in the validation cohort when using these imaging modalities alone. However, integrating these biochemical indicators improved the model's performance, increasing the validation cohort AUC to 0.87. CONCLUSION: In this study, the performance of the model significantly improved following multimodal fusion, outperforming the single-modality approach. CLINICAL RELEVANCE STATEMENT: This integration of radiomics, ViT models, and lipid metabolite analysis, presents a promising non-invasive technique for predicting the staging of OSCC.


Subject(s)
Magnetic Resonance Imaging , Mouth Neoplasms , Neoplasm Staging , Humans , Magnetic Resonance Imaging/methods , Mouth Neoplasms/diagnostic imaging , Mouth Neoplasms/pathology , Female , Male , Middle Aged , Aged , Lipids/blood , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/pathology , Adult , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/pathology , ROC Curve , Biomarkers, Tumor , Machine Learning , Radiomics
4.
Sci Total Environ ; 946: 174463, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964385

ABSTRACT

The increasingly urgent issue of climate change is driving the development of carbon dioxide (CO2) capture and separation technologies in flue gas after combustion. The monolithic adsorbent stands out in practical adsorption applications for its simplified powder compaction process while maintaining the inherent balance between energy consumption for regeneration and selectivity for adsorption. However, optimizing the adsorption capacity and selectivity of CO2 separation materials remains a significant challenge. Herein, we synthesized monolithic polymer networks (N-CMPs) with triphenylamine adsorption sites, acid-base environment tolerance, and precise narrow microchannel pore systems for the selective sieving of CO2 and particulate matter (PM) in flue gas. The inherent continuous covalent bonding of N-CMPs, along with their highly delocalized π-π conjugated porous framework, ensures the stability of the monolithic polymer network's adsorption and separation capabilities under wet and acid-base conditions. Specifically, under the conditions of 1 bar at 273 K, the CO2 adsorption capacity of N-CMP-1 is 3.35 mmol/g. Attributed to the highly polar environment generated by triphenylamine and the inherent high micropore/mesopore ratio, N-CMPs exhibit an excellent ideal adsorbed solution theory (IAST) selectivity for CO2/N2 under simulated flue gas conditions (CO2/N2 = 15:85). Dynamic breakthrough experiments further visualize the high separation efficiency of N-CMPs in practical adsorption applications. Moreover, under acid-base conditions, N-CMPs achieve a capture efficiency exceeding 99.76 % for PM0.3, enabling the selective separation of CO2 and PM in flue gas. In fact, the combined capture of hazardous PM and CO2 from the exhaust gases produced by the combustion of fossil fuels will play a pivotal role in mitigating climate change and environmental issues until low-carbon and alternative energy technologies are widely adopted.

5.
Chem Sci ; 15(26): 10193-10199, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966371

ABSTRACT

Coplanar groups with large anisotropic polarizability are suitable as birefringence-active groups for investigating compounds with significant birefringence. In this study, the organic coplanar raw reagent, o-C5H5NO (4HP), was selected as an individual complement. Utilizing the cocrystal engineering strategy, we successfully designed two cocrystals: [LiNO3·H2O·4HP]·4HP (Li-4HP2) and [Mg(NO3)2·6H2O]·(4HP)2 (Mg-4HP), and one by-product: LiNO3·H2O·4HP (Li-4HP), which were grown using a mild aqua-solution method. The synergy of the coplanar groups of NO3 - and 4HP in the structures resulted in unexpectedly large birefringence values of 0.376-0.522@546 nm. Furthermore, the compounds exhibit large bandgaps (4.08-4.51 eV), short UV cutoff edges (275-278 nm), and favorable growth habits, suggesting their potential as short-wave UV birefringent materials.

6.
mBio ; : e0154924, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953350

ABSTRACT

Metabolism in host cells can be modulated after viral infection, favoring viral survival or clearance. Here, we report that lipid droplet (LD) synthesis in host cells can be modulated by yin yang 1 (YY1) after porcine reproductive and respiratory syndrome virus (PRRSV) infection, resulting in active antiviral activity. As a ubiquitously distributed transcription factor, there was increased expression of YY1 upon PRRSV infection both in vitro and in vivo. YY1 silencing promoted the replication of PRRSV, whereas YY1 overexpression inhibited PRRSV replication. PRRSV infection led to a marked increase in LDs, while YY1 knockout inhibited LD synthesis, and YY1 overexpression enhanced LD accumulation, indicating that YY1 reprograms PRRSV infection-induced intracellular LD synthesis. We also showed that the viral components do not colocalize with LDs during PRRSV infection, and the effect of exogenously induced LD synthesis on PRRSV replication is nearly lethal. Moreover, we demonstrated that YY1 affects the synthesis of LDs by regulating the expression of lipid metabolism genes. YY1 negatively regulates the expression of fatty acid synthase (FASN) to weaken the fatty acid synthesis pathway and positively regulates the expression of peroxisome proliferator-activated receptor gamma (PPARγ) to promote the synthesis of LDs, thus inhibiting PRRSV replication. These novel findings indicate that YY1 plays a crucial role in regulating PRRSV replication by reprogramming LD synthesis. Therefore, our study provides a novel mechanism of host resistance to PRRSV and suggests potential new antiviral strategies against PRRSV infection.IMPORTANCEPorcine reproductive and respiratory virus (PRRSV) has caused incalculable economic damage to the global pig industry since it was first discovered in the 1980s. However, conventional vaccines do not provide satisfactory protection. It is well known that viruses are parasitic pathogens, and the completion of their replication life cycle is highly dependent on host cells. A better understanding of host resistance to PRRSV infection is essential for developing safe and effective strategies to control PRRSV. Here, we report a crucial host antiviral molecule, yin yang 1 (YY1), which is induced to be expressed upon PRRSV infection and subsequently inhibits virus replication by reprogramming lipid droplet (LD) synthesis through transcriptional regulation. Our work provides a novel antiviral mechanism against PRRSV infection and suggests that targeting YY1 could be a new strategy for controlling PRRSV.

7.
Article in English | MEDLINE | ID: mdl-38954244

ABSTRACT

Triple-negative breast cancer (TNBC) could benefit from PARP inhibitors (PARPi) for their frequent defective homologous recombination repair (HR). However, the efficacy of PARPi is limited by their lower bioavailability and high susceptibility to drug resistance, so it often needs to be combined with other treatments. Herein, polydopamine nanoparticles (PDMN) were constructed to load Olaparib (AZD) as two-channel therapeutic nanoplatforms. The PDMN has a homogeneous spherical structure around 100 nm and exhibits a good photothermal conversion efficiency of 62.4%. The obtained AZD-loaded nanoplatform (PDMN-AZD) showed enhanced antitumor effects through the combination of photothermal therapy (PTT) and PARPi. By western blot and flow cytometry, we found that PTT and PARPi could exert synergistic antitumor effects by further increasing DNA double-strand damage (DSBs) and enhancing HR defects. The strongest therapeutic effect of PDMN-AZD was observed in a BRCA-deficient mouse tumor model. In conclusion, the PDMN-AZD nanoplatform designed in this study demonstrated the effectiveness of PTT and PARPi for synergistic treatment of TNBC and preliminarily explained the mechanism.

8.
Front Neurol ; 15: 1376019, 2024.
Article in English | MEDLINE | ID: mdl-38957353

ABSTRACT

Introduction: Neurogenic hypertension (HTN) is a type of HTN characterized by increased activity of the sympathetic nervous system. Vascular compression is one of the pathogenic mechanisms of neurogenic HTN. Despite Jannetta's solid anatomical and physiological arguments in favor of neurogenic HTN in the 1970's, the treatment for essential HTN by microvascular decompression (MVD) still lacks established selection criteria. Therefore, the subjects selected for our center were limited to patients with primary trigeminal neuralgia (TN) and primary hemifacial spasm (HFS) of the vertebral/basilar artery (VA/BA) responsible vessel type coexisting with neurogenic HTN who underwent MVD of the brainstem to further explore possible indications for MVD in the treatment of neurogenic HTN. Methods: A retrospective analysis of 63 patients who were diagnosed with neurogenic HTN had symptoms of HFS and TN cranial nerve disease. Patients were treated at our neurosurgery department from January 2018 to January 2023. A preoperative magnetic resonance examination of the patients revealed the presence of abnormally located vascular compression in the rostral ventrolateral medulla (RVLM) and the root entry zone (REZ) of the IX and X cranial nerves (CN IX- X). Results: There was no significant difference between the two groups in terms of gender, age, course of HFS, course of TN, course of HTN, degree of HTN, or preoperative blood pressure. Based on the postoperative blood pressure levels, nine out of 63 patients were cured (14.28%), eight cases (12.70%) showed a marked effect, 16 cases (25.40%) were effective, and 30 cases were invalid (47.62%). The overall efficacy was 52.38%. However, 39 cases of combined cranial nerve disease were on the left side of the efficacy rate (66.67%) and 24 cases of combined cranial nerve disease were on the right side of the efficacy rate (29.16%). Discussion: Over the last few decades, many scholars have made pioneering progress in the clinical retrospective study of MVD for neurogenic hypertension, and our study confirms the efficacy of MVD in treating vertebral/basilar artery-type neurogenic hypertension by relieving the vascular pressure of RVLM. In the future, with the development and deepening of pathological mechanisms and clinical observational studies, MVD may become an important treatment for neurogenic hypertension by strictly grasping the surgical indications. Conclusion: MVD is an effective treatment for neurogenic HTN. Indications may include the following: left-sided TN or HFS combined with neurogenic HTN; VA/BA compression in the left RVLM and REZ areas on MRI; and blood pressure in these patients cannot be effectively controlled by drugs.

9.
Sleep Med ; 121: 102-110, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959716

ABSTRACT

OBJECTIVES: To explore the causal relationships between sex hormone levels and incidence of isolated REM sleep behavior disorder (iRBD). METHODS: In our study, we utilized Genome-Wide Association Studies (GWAS) data for iRBD, including 9447 samples with 1061 cases of iRBD provided by the International RBD Study Group. Initially, we conducted a two-sample univariate MR analysis to explore the impact of sex hormone-related indicators on iRBD. This was followed by the application of multivariable MR methods to adjust for other hormone levels and potential confounders. Finally, we undertook a network MR analysis, employing brain structure Magnetic Resonance Imaging (MRI) characteristics as potential mediators, to examine whether sex hormones could indirectly influence the incidence of iRBD by affecting brain structure. RESULTS: Bioavailable testosterone (BioT) is an independent risk factor for iRBD (Odds Ratio [95 % Confidence Interval] = 2.437 [1.308, 4.539], P = 0.005, corrected-P = 0.020), a finding that remained consistent even after adjusting for other sex hormone levels and potential confounders. Additionally, BioT appears to indirectly increase the risk of iRBD by reducing axial diffusivity and increasing the orientation dispersion index in the left cingulum and cingulate gyrus. CONCLUSIONS: Our research reveals that elevated levels of BioT contribute to the development of iRBD. However, the specific impact of BioT on different sexes remains unclear. Furthermore, high BioT may indirectly lead to iRBD by impairing normal pathways in the left cingulum and cingulate gyrus and fostering abnormal pathway formation.

10.
RSC Adv ; 14(30): 21425-21431, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38979464

ABSTRACT

Although a lot of research has been carried out on the adhesion mechanism of gecko bristles, the research on materials inspired by gecko bristles is still limited to the design of geometric structure and the optimization of preparation process, and the adhesion mechanism of materials is still unclear. In this paper, the molecular structure of the end of the bristle-like material is focused on, and the interaction between functional group modified carbon nanotubes and the interface is analyzed by molecular dynamics simulation. Thus, the influence of different polar functional groups on the interfacial force between carbon nanotubes and silica is revealed, and the adhesion enhancement mechanism of polar groups on the interface between carbon nanotubes and silica is further verified.

11.
Cancer Cell ; 42(7): 1217-1238.e19, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981438

ABSTRACT

Although genomic anomalies in glioblastoma (GBM) have been well studied for over a decade, its 5-year survival rate remains lower than 5%. We seek to expand the molecular landscape of high-grade glioma, composed of IDH-wildtype GBM and IDH-mutant grade 4 astrocytoma, by integrating proteomic, metabolomic, lipidomic, and post-translational modifications (PTMs) with genomic and transcriptomic measurements to uncover multi-scale regulatory interactions governing tumor development and evolution. Applying 14 proteogenomic and metabolomic platforms to 228 tumors (212 GBM and 16 grade 4 IDH-mutant astrocytoma), including 28 at recurrence, plus 18 normal brain samples and 14 brain metastases as comparators, reveals heterogeneous upstream alterations converging on common downstream events at the proteomic and metabolomic levels and changes in protein-protein interactions and glycosylation site occupancy at recurrence. Recurrent genetic alterations and phosphorylation events on PTPN11 map to important regulatory domains in three dimensions, suggesting a central role for PTPN11 signaling across high-grade gliomas.


Subject(s)
Brain Neoplasms , Glioma , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Signal Transduction , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Mutation , Proteomics/methods , Protein Processing, Post-Translational , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Phosphorylation , Neoplasm Grading , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism
12.
Vaccine ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981740

ABSTRACT

The Bacille Calmette-Guerin (BCG) vaccine is a well-established inducer of innate immune memory (also termed trained immunity), causing increased cytokine production upon heterologous secondary stimulation. Innate immune responses are known to be influenced by season, but whether seasons impact induction of trained immunity is not known. To explore the influence of season on innate immune memory induced by the BCG vaccine, we vaccinated healthy volunteers with BCG either during winter or spring. Three months later, we measured the ex vivo cytokine responses against heterologous stimuli, analyzed gene expressions and epigenetic signatures of the immune cells, and compared these with the baseline before vaccination. BCG vaccination during winter induced a stronger increase in the production of pro-inflammatory cytokines by peripheral blood mononuclear cells (PBMCs) upon stimulation with different bacterial and fungal stimuli, compared to BCG vaccination in spring. In contrast, winter BCG vaccination resulted in lower IFNγ release in PBMCs compared to spring BCG vaccination. Furthermore, NK cells of the winter-vaccinated people had a greater pro-inflammatory cytokine and IFNγ production capacity upon heterologous stimulation. BCG had only minor effects on the transcriptome of monocytes 3 months later. In contrast, we identified season-dependent epigenetic changes in monocytes and NK cells induced by vaccination, partly explaining the higher immune cell reactivity in the winter BCG vaccination group. These results suggest that BCG vaccination during winter is more prone to induce a robust trained immunity response by activating and reprogramming the immune cells, especially NK cells. (Dutch clinical trial registry no. NL58219.091.16).

13.
Neuroscience ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992566

ABSTRACT

The study aimed to assess the analgesic effect of 10 Hz repetitive transcranial magnetic stimulation (rTMS) targeted to the prefrontal cortex (PFC) region on neuropathic pain (NPP) in rats with chronic constriction injury (CCI) of the sciatic nerve, and to investigate the possible underlying mechanism. Rats were randomly divided into three groups: sham operation, CCI, and rTMS. In the latter group, rTMS was applied to the left PFC. Von Frey fibres were used to measure the paw withdrawal mechanical threshold (PWMT). At the end of the treatment, immunofluorescence and western blotting were applied to detect the expression of M1 and M2 polarisation markers in microglia in the left PFC and sciatic nerve. ELISA was further used to detect the concentrations of inflammation-related cytokines. The results showed that CCI caused NPP in rats, reduced the pain threshold, promoted microglial polarisation to the M1 phenotype, and increased the secretion of pro-inflammatory and anti-inflammatory factors. Moreover, 10 Hz rTMS to the PFC was shown to improve NPP induced by CCI, induce microglial polarisation to M2, reduce the secretion of pro-inflammatory factors, and further increase the secretion of anti-inflammatory factors. Our data suggest that 10 Hz rTMS can alleviate CCI-induced neuropathic pain, while the underlying mechanism may potentially be related to the regulation of microglial M1-to-M2-type polarisation to regulate neuroinflammation.

14.
Mediterr J Hematol Infect Dis ; 16(1): e2024052, 2024.
Article in English | MEDLINE | ID: mdl-38984102

ABSTRACT

Background: The paper was to investigate the clinical relevance of oxidative stress (OS) and inflammation-associated targets in coronary artery lesions (CALs) associated with Kawasaki disease (KD). Methods: The clinical data from 455 sufferers diagnosed with KD between February 2021 and June 2023 were gathered and divided into two groups: CAL and NCAL. The regression analysis was conducted to search for independent covariates for CALs related to OS and inflammation. The predictive nomogram was structured according to these risk factors. The properties of the model were estimated using calibration and receiver operating characteristic curves. Results: The levels of CRP, IL-6, PLT count, ESR, ox-HDL, MDA, and PLR were more elevated in CAL patients with KD; interestingly, HDL and superoxide dismutase (SOD) were low in the CAL group. Ascension of CRP, IL-6, ESR, ox-HDL, MDA, and PLR, and diminution of HDL and SOD were considered independent risk factors. The nomogram constructed using these factors demonstrated a satisfactory calibration degree and discriminatory power, with an area under the curve of 0.812. In the verification set, the area under the curve was found to be 0.799. Conclusion: The model was established according to 8 OS and inflammation-associated risk factors bound up with CALs in KD sufferers. It may be a usable approach for early diagnosis of CALs in KD.

15.
J Chin Med Assoc ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984546

ABSTRACT

BACKGROUND: This study aimed to investigate the clinical efficacy of intra-articular injections of medical chitosan for treating knee osteoarthritis (KOA) and measure the lipid metabolism profiles of the synovial tissue. METHODS: 60 patients with KOA undergoing conservative treatment were recruited and randomized into two groups: one without pharmacological intervention (OA group) and the other receiving course-based intra-articular medical chitosan injections (CSI group). Quantitative lipidomic profile of synovial tissue was analyzed. Functional scores, including Kellgren-Lawrence rating (K-L), VAS, WOMAC scoring, and AKS scoring were conducted. RESULTS: Survival from the initial conservative treatment to final knee arthroplasty was significantly longer in the CSI group compared to the OA group. Except for the pre-surgery VAS score, no statistically significant differences were observed in the other scores, including K-L, initial VAS, WOMAC, and AKS. However, the CSI group experienced a slightly more pronounced decline in AKS-Knee subscores compared to the OA group. Compared to the CSI group, the OA group exhibited a significant upregulation in most differential lipids, particularly triacylglycerides (TAGs, 77%). The OA group had notably higher levels of long-chain unsaturated fatty acids. CONCLUSION: Intra-articular injection of medical chitosan significantly prolongs the survival period before knee arthroplasty and reduces the deposition of TAGs metabolites.

16.
Crit Rev Biotechnol ; : 1-19, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987975

ABSTRACT

Oxygenic photosynthesis in microalgae and cyanobacteria is considered an important chassis to accelerate energy transition and mitigate global warming. Currently, cultivation systems for photosynthetic microbes for large-scale applications encountered excessive light exposure stress. High light stress can: affect photosynthetic efficiency, reduce productivity, limit cell growth, and even cause cell death. Deciphering photoprotection mechanisms and constructing high-light tolerant chassis have been recent research focuses. In this review, we first briefly introduce the self-protection mechanisms of common microalgae and cyanobacteria in response to high light stress. These mechanisms mainly include: avoiding excess light absorption, dissipating excess excitation energy, quenching excessive high-energy electrons, ROS detoxification, and PSII repair. We focus on the species-specific differences in these mechanisms as well as recent advancements. Then, we review engineering strategies for creating high-light tolerant chassis, such as: reducing the size of the light-harvesting antenna, optimizing non-photochemical quenching, optimizing photosynthetic electron transport, and enhancing PSII repair. Finally, we propose a comprehensive exploration of mechanisms: underlying identified high light tolerant chassis, identification of new genes pertinent to high light tolerance using innovative methodologies, harnessing CRISPR systems and artificial intelligence for chassis engineering modification, and introducing plant photoprotection mechanisms as future research directions.

17.
Cell ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38996528

ABSTRACT

In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.

18.
Food Chem ; 459: 140337, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38996640

ABSTRACT

Oleogels containing bioactive substances such as citral (CT) are used as functional food ingredients. However, little information is available on the influence of different oleogel network structure caused by CT addition and fatty acid distribution on its digestion behavior. Coconut oil, palm oil, high oleic peanut oil, safflower seed oil, and perilla seed oil were used in this study. The results showed that perilla seed oil-CT-based oleogels had the highest oil-holding capacity (99.03 ± 0.3), whereas CT addition higher than 10 wt% could lead to the morphology collapse of oleogels. Physical and thermodynamic analyses revealed that CT could reduce oleogel hardness and higher unsaturated fatty acid content is more likely to form oleogel with stable and tight crystalline network. Moreover, the dense structure of oleogels hinders the contact between oleogels and lipase, thus weakening triglyceride digestion. These findings provide valuable insights into the design of oleogels loading with CT.

19.
Aesthetic Plast Surg ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997426

ABSTRACT

BACKGROUND: The superomedial pedicle reduction mammoplasty has gained popularity and is an important alternative approach for reduction mammoplasty, while the inferior pedicle reduction mammaplasty remains by far the most performed as it is considered to provide the best vascularization to the nipple-areola complex, allowing safe removal of large amount of redundant tissue. The authors conducted the first systematic review and meta-analysis in an attempt to declare the differences of the superomedial pedicle versus the inferior pedicle reduction technique by comparing the postoperative complications. METHODS: PubMed, MEDLINE, and Cochrane Library for clinical studies were queried from inception to January 1, 2024. Review Manager Version 5.4 was used for this meta-analysis. A random effects model was applied to OR, and 95%CI were determined using the Mantel-Haenszel method. The I2 test was used to assess heterogeneity, and the Newcastle-Ottawa scale was used to assess the risk of bias in the nonrandomized studies. RESULTS: Twelve observational comparative studies were included. The superomedial pedicle technique had a statistically lower rate of overall complications (OR 0.59, 95% CI 0.47-0.75; p < 0.0001) and delayed wound healing (OR 0.46, 95% CI 0.33-0.64; p < 0.00001) than the inferior pedicle technique. No significant differences in wound dehiscence, infection, seroma, hematoma, skin necrosis, fat necrosis, NAC necrosis, nipple sensation decrease or loss, asymmetry, hypertrophic scarring, and reoperation were noted. CONCLUSIONS: Both two techniques are equally safe and reliable, while the superomedial pedicle technique resulted in a statistically lower rate of overall complications and delayed wound healing. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

20.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982460

ABSTRACT

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Immunity , RNA Precursors , RNA Splicing , Plant Immunity/genetics , Arabidopsis/genetics , Arabidopsis/immunology , RNA Precursors/genetics , RNA Precursors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Spliceosomes/metabolism , Spliceosomes/genetics , Plant Diseases/genetics , Plant Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...