Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.451
Filter
1.
Physiol Plant ; 176(4): e14433, 2024.
Article in English | MEDLINE | ID: mdl-38994561

ABSTRACT

Cadmium (Cd) is a leading environmental issue worldwide. The current study was conducted to investigate Cd tolerance of 10 commercial white clover (Trifolium repens) cultivars during seed germination and to further explore differences in lipid remodelling, glycometabolism, and the conversion of lipids into sugars contributing to Cd tolerance in the early phase of seedling establishment as well as the accumulation of Cd in seedlings and mature plants. The results show that Cd stress significantly reduced seed germination of 10 cultivars. Compared to Cd-sensitive Sulky, Cd-tolerant Pixie accelerated amylolysis to produce more glucose, fructose, and sucrose by maintaining higher amylase and sucrase activities under Cd stress. Pixie maintained higher contents of various lipids, higher DGDG/MGDG ratio, and lower unsaturation levels of lipids, which could be beneficial to membrane stability and integrity as well as signal transduction in cells after being subjected to Cd stress. In addition, Pixie upregulated expression levels of key genes (TrACX1, TrACX4, TrSDP6, and TrPCK1) involved in the conversion of lipids into sugars for early seedling establishment under Cd stress. These findings indicate that lipid remodelling, enhanced glycometabolism, and accelerated conversion of lipids into sugars are important adaptive strategies for white clover seed germination and subsequent seedling establishment under Cd stress. In addition, Pixie not only accumulated more Cd in seedlings and mature plants than Sulky but also had significantly better growth and phytoremediation efficiency under Cd stress. Pixie could be used as a suitable and critical germplasm for the rehabilitation and re-establishment of Cd-contaminated areas.


Subject(s)
Cadmium , Germination , Seeds , Trifolium , Cadmium/toxicity , Germination/drug effects , Trifolium/drug effects , Trifolium/metabolism , Trifolium/genetics , Trifolium/growth & development , Trifolium/physiology , Seeds/drug effects , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Sugars/metabolism , Lipid Metabolism/drug effects , Lipids , Gene Expression Regulation, Plant/drug effects
2.
Plants (Basel) ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999613

ABSTRACT

Creeping bentgrass (Agrostis stolonifera) is an excellent cool-season turfgrass that is widely used in urban gardening, landscaping, and golf turf. Triennial field experiments from 2017 to 2019 were conducted to investigate effects of the foliar application of chitosan (CTS), γ-aminobutyric acid (GABA), or sodium chloride (NaCl) on mitigating summer bentgrass decline (SBD) and exploring the CTS, GABA, or NaCl regulatory mechanism of tolerance to summer heat stress associated with changes in chlorophyll (Chl) loss and photosynthetic capacity, osmotic adjustment (OA), oxidative damage, and cell membrane stability. The findings demonstrated that persistent ambient high temperatures above 30 °C during the summer months of 2017, 2018, and 2019 significantly reduced the turf quality (TQ), Chl content, photochemical efficiency of PSII (Fv/Fm and PIABS), leaf relative water content, and osmotic potential (OP) but significantly increased electrolyte leakage (EL) and the accumulations of free proline, water-soluble carbohydrate (WSC), hydrogen peroxide (H2O2), and malondialdehyde (MDA). The foliar application of CTS, GABA, or NaCl could significantly alleviate SBD, as reflected by improved TQ and delayed Chl loss during hot summer months. Heat-induced declines in Fv/Fm, PIABS, the net photosynthetic rate (Pn), the transpiration rate (Tr), and water use efficiency (WUE) could be significantly mitigated by the exogenous application of CTS, GABA, or NaCl. In addition, the foliar application of CTS, GABA, or NaCl also significantly improved the accumulations of free proline and WSC but reduced the EL, OP, and H2O2 content and the MDA content in leaves of creeping bentgrass in favor of water and redox homeostasis in summer. Based on the comprehensive evaluation of the subordinate function value analysis (SFVA), the CTS had the best effect on the mitigation of SBD, followed by GABA and NaCl in 2017, 2018, and 2019. The current study indicates that the foliar application of an appropriate dose of GABA, CTS, or NaCl provides a cost-effective strategy for mitigating SBD.

3.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000081

ABSTRACT

Spermidine is well known to accumulate in plants exposed to drought, but the regulatory network associated with its biosynthesis and accumulation and the underlying molecular mechanisms remain unclear. Here, we demonstrated that the Trifolium repens TrMYB33 relayed the ABA signal to modulate drought-induced spermidine production by directly regulating the expression of TrSAMS1, which encodes an S-adenosylmethionine synthase. This gene was identified by transcriptome and expression analysis in T. repens. TrSAMS1 overexpression and its pTRV-VIGS-mediated silencing demonstrated that TrSAMS1 is a positive regulator of spermidine synthesis and drought tolerance. TrMYB33 was identified as an interacting candidate through yeast one-hybrid library screening with the TrSAMS1 promoter region as the bait. TrMYB33 was confirmed to bind directly to the predicted TAACCACTAACCA (the TAACCA MYB binding site is repeated twice in tandem) within the TrSAMS1 promoter and to act as a transcriptional activator. Additionally, TrMYB33 contributed to drought tolerance by regulating TrSAMS1 expression and modulating spermidine synthesis. Additionally, we found that spermidine accumulation under drought stress depended on ABA and that TrMYB33 coordinated ABA-mediated upregulation of TrSAMS1 and spermidine accumulation. This study elucidated the role of a T. repens MYB33 homolog in modulating spermidine biosynthesis. The further exploitation and functional characterization of the TrMYB33-TrSAMS1 regulatory module can enhance our understanding of the molecular mechanisms responsible for spermidine accumulation during drought stress.


Subject(s)
Abscisic Acid , Droughts , Gene Expression Regulation, Plant , Plant Proteins , Spermidine , Trifolium , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism , Trifolium/genetics , Trifolium/metabolism , Spermidine/metabolism , Spermidine/biosynthesis , Promoter Regions, Genetic , Stress, Physiological , Transcription Factors/metabolism , Transcription Factors/genetics , Signal Transduction , Drought Resistance
4.
Hum Reprod ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013119

ABSTRACT

STUDY QUESTION: Can the density of the inner cell mass (ICM) be a new indicator of the quality of the human blastocyst? SUMMARY ANSWER: The densification index (DI) developed in this study can quantify ICM density and provide positive guidance for ploidy, pregnancy, and live birth. WHAT IS KNOWN ALREADY: In evaluating the quality of ICM, reproductive care clinics still use size indicators without further evaluation. The main disadvantage of this current method is that the evaluation of blastocyst ICM is relatively rough and cannot meet the needs of clinical embryologists, especially when multiple blastocysts have the same ICM score, which makes them difficult to evaluate further. STUDY DESIGN, SIZE, DURATION: This observational study included data from 2272 blastocysts in 1991 frozen-thawed embryo transfer (FET) cycles between January 2018 to November 2021 and 1105 blastocysts in 430 preimplantation genetic testing cycles between January 2019 and February 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS: FET, ICSI, blastocyst culture, trophectoderm biopsy, time-lapse (TL) monitoring, and next-generation sequencing were performed. After preliminary sample size selection, the 11 focal plane images captured by the TL system were normalized and the spatial frequency was used to construct the DI of the ICM. MAIN RESULTS AND THE ROLE OF CHANCE: This study successfully constructed a quantitative indicator DI that can reflect the degree of ICM density in terms of fusion and texture features. The higher the DI value, the better the density of the blastocyst ICM, and the higher the chances that the blastocyst was euploid (P < 0.001) and that pregnancy (P < 0.001) and live birth (P = 0.005) were reached. In blastocysts with ICM graded B and blastocysts graded 4BB, DI was also positively associated with ploidy, pregnancy, and live birth (P < 0.05). ROC analysis showed that combining the Gardner scoring system with DI can more effectively predict pregnancy and live births, when compared to using the Gardner scoring system alone. LIMITATIONS, REASONS FOR CAUTION: Accurate calculation of the DI value places high demands on image quality, requiring manual selection of the clearest focal plane and exposure control. Images with the ICM not completely within the field of view cannot be used. The association between the density of ICM and chromosomal mosaicism was not evaluated. The associations between the density of ICM and different assisted reproductive technologies and different culture conditions in embryo laboratories were also not evaluated. Prospective studies are needed to further investigate the impact of ICM density on clinical outcomes. WIDER IMPLICATIONS OF THE FINDINGS: ICM density assessment is a new direction in blastocyst assessment. This study explores new ways of assessing blastocyst ICM density and develops quantitative indicators and a corresponding qualitative evaluation scheme for ICM density. The DI of the blastocyst ICM developed in this study is easy to calculate and requires only TL equipment and image processing, providing positive guidance for clinical outcomes. The qualitative evaluation scheme of ICM density can assist embryologists without TL equipment to manually evaluate ICM density. ICM density is a simple indicator that can be used in practice and is a good complement to the blastocyst scoring systems currently used in most centers. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Key Research & Development Program of China (2021YFC2700603). The authors report no financial or commercial conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.

5.
Reprod Biol Endocrinol ; 22(1): 81, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010092

ABSTRACT

BACKGROUND: The occurrence of blastocyst collapse may become an indicator of preimplantation embryo quality assessment. It has been reported that collapsing blastocysts can lead to higher rates of aneuploidy and poorer clinical outcomes, but more large-scale studies are needed to explore this relationship. This study explored the characteristics of blastocyst collapse identified and quantified by artificial intelligence and explored the associations between blastocyst collapse and embryo ploidy, morphological quality, and clinical outcomes. METHODS: This observational study included data from 3288 biopsied blastocysts in 1071 time-lapse preimplantation genetic testing cycles performed between January 2019 and February 2023 at a single academic fertility center. All transferred blastocysts are euploid blastocysts. The artificial intelligence recognized blastocyst collapse in time-lapse microscopy videos and then registered the collapsing times, and the start time, the recovery duration, the shrinkage percentage of each collapse. The effects of blastocyst collapse and embryo ploidy, pregnancy, live birth, miscarriage, and embryo quality were studied using available data from 1196 euploid embryos and 1300 aneuploid embryos. RESULTS: 5.6% of blastocysts collapsed at least once only before the full blastocyst formation (tB), 19.4% collapsed at least once only after tB, and 3.1% collapsed both before and after tB. Multiple collapses of blastocysts after tB (times ≥ 2) are associated with higher aneuploid rates (54.6%, P > 0.05; 70.5%, P < 0.001; 72.5%, P = 0.004; and 71.4%, P = 0.049 in blastocysts collapsed 1, 2, 3 or ≥ 4 times), which remained significant after adjustment for confounders (OR = 2.597, 95% CI 1.464-4.607, P = 0.001). Analysis of the aneuploid embryos showed a higher ratio of collapses and multiple collapses after tB in monosomies and embryos with subchromosomal deletion of segmental nature (P < 0.001). Blastocyst collapse was associated with delayed embryonic development and declined blastocyst quality. There is no significant difference in pregnancy and live birth rates between collapsing and non-collapsing blastocysts. CONCLUSIONS: Blastocyst collapse is common during blastocyst development. This study underlined that multiple blastocyst collapses after tB may be an independent risk factor for aneuploidy which should be taken into account by clinicians and embryologists when selecting blastocysts for transfer.


Subject(s)
Aneuploidy , Blastocyst , Embryo Transfer , Preimplantation Diagnosis , Blastocyst/physiology , Female , Humans , Pregnancy , Risk Factors , Adult , Preimplantation Diagnosis/methods , Embryo Transfer/methods , Artificial Intelligence , Embryonic Development/physiology , Pregnancy Rate , Embryo Culture Techniques/methods , Time-Lapse Imaging/methods , Fertilization in Vitro/methods
6.
Hum Reprod ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942602

ABSTRACT

STUDY QUESTION: Can pregnancy outcomes following fresh elective single embryo transfer (eSET) in gonadotropin-releasing hormone (GnRH) antagonist protocols increase using a gonadotropin (Gn) step-down approach with cessation of GnRH antagonist on the day of hCG administration (hCG day) in patients with normal ovarian response? SUMMARY ANSWER: The modified GnRH antagonist protocol using the Gn step-down approach and cessation of GnRH antagonist on the hCG day is effective in improving live birth rates (LBRs) per fresh eSET cycle. WHAT IS KNOWN ALREADY: Currently, there is no consensus on optimal GnRH antagonist regimens. Studies have shown that fresh GnRH antagonist cycles result in poorer pregnancy outcomes than the long GnRH agonist (GnRHa) protocol. Endometrial receptivity is a key factor that contributes to this phenomenon. STUDY DESIGN, SIZE, DURATION: An open label randomized controlled trial (RCT) was performed between November 2021 and August 2022. There were 546 patients allocated to either the modified GnRH antagonist or the conventional antagonist protocol at a 1:1 ratio. PARTICIPANTS/MATERIALS, SETTING, METHODS: Both IVF and ICSI cycles were included, and the sperm samples used were either fresh or frozen from the partner, or from frozen donor ejaculates. The primary outcome was the LBRs per fresh SET cycle. Secondary outcomes included rates of implantation, clinical and ongoing pregnancy, miscarriage, and ovarian hyperstimulation syndrome (OHSS), as well as clinical outcomes of ovarian stimulation. MAIN RESULTS AND THE ROLE OF CHANCE: Baseline demographic features were not significantly different between the two ovarian stimulation groups. However, in the intention-to-treat (ITT) population, the LBRs in the modified antagonist group were significantly higher than in the conventional group (38.1% [104/273] vs. 27.5% [75/273], relative risk 1.39 [95% CI, 1.09-1.77], P = 0.008). Using a per-protocol (PP) analysis which included all the patients who received an embryo transfer, the LBRs in the modified antagonist group were also significantly higher than in the conventional group (48.6% [103/212] vs. 36.8% [74/201], relative risk 1.32 [95% CI, 1.05-1.66], P = 0.016). The modified antagonist group achieved significantly higher implantation rates, and clinical and ongoing pregnancy rates than the conventional group in both the ITT and PP analyses (P < 0.05). The two groups did not show significant differences between the number of oocytes retrieved or mature oocytes, two-pronuclear zygote (2PN) rates, the number of embryos obtained, blastocyst progression and good-quality embryo rates, early miscarriage rates, or OHSS incidence rates (P > 0.05). LIMITATIONS, REASONS FOR CAUTION: A limitation of our study was that the subjects were not blinded to the treatment allocation in the RCT trial. Only women under 40 years of age who had a good prognosis were included in the analysis. Therefore, use of the modified antagonist protocol in older patients with a low ovarian reserve remains to be investigated. In addition, the sample size for Day 5 elective SET was small, so larger trials will be required to strengthen these findings. WIDER IMPLICATIONS OF THE FINDINGS: The modified GnRH antagonist protocol using the Gn step-down approach and cessation of GnRH antagonist on hCG day improved the LBRs per fresh eSET cycle in normal responders. STUDY FUNDING/COMPETING INTEREST(S): This project was funded by grant 2022YFC2702503 from the National Key Research & Development Program of China and grant 2021140 from the Beijing Health Promotion Association. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: The RCT was registered in the Chinese Clinical Trial Registry; Study Number: ChiCTR2100053453. TRIAL REGISTRATION DATE: 21 November 2021. DATE OF FIRST PATIENT'S ENROLLMENT: 23 November 2021.

7.
Adv Mater ; : e2402457, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898691

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of death worldwide. Patients often fail to recognize the early signs of CVDs, which display irregularities in cardiac contractility and may ultimately lead to heart failure. Therefore, continuously monitoring the abnormal changes in cardiac contractility may represent a novel approach to long-term CVD surveillance. Here, a zero-power consumption and implantable bias-free cardiac monitoring capsule (BCMC) is introduced based on the triboelectric effect for cardiac contractility monitoring in situ. The output performance of BCMC is improved over 10 times with nanoparticle self-adsorption method. This device can be implanted into the right ventricle of swine using catheter intervention to detect the change of cardiac contractility and the corresponding CVDs. The physiological signals can be wirelessly transmitted to a mobile terminal for analysis through the acquisition and transmission module. This work contributes to a new option for precise monitoring and early diagnosis of CVDs.

8.
Appl Opt ; 63(16): 4360-4365, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856614

ABSTRACT

The observation area of a point target, which is usually inaccessible, is a necessary condition when utilizing the conventional single-band infrared radiometric thermometry method, as the image gray level inevitably undergoes dispersion. Otherwise, significant errors will be generated, seriously affecting the applicability of infrared radiometric thermometry for distant point targets in the external field. To address the above issue, the infrared radiometric thermometry method for point targets has been researched. A point target radiometric thermometry method based on dual-band infrared imaging is proposed, which can effectively measure radiance and temperature when the area of the point target is unknown. The experimental results show that, compared with conventional single-band algorithms, the proposed dual-band point target thermometry algorithm has a maximum error of 11.18°C under the condition of unknown area, which can meet the needs of infrared radiometric thermometry of point targets at long distances in the external field.

9.
Nano Lett ; 24(25): 7724-7731, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38864413

ABSTRACT

Perovskite monocrystalline films are regarded as desirable candidates for the integration of high-performance optoelectronics due to their unique photophysical properties. However, the heterogeneous integration of a perovskite monocrystalline film with other semiconductors is fundamentally limited by the lattice mismatch, which hinders direct epitaxy. Herein, the van der Waals (vdW) integration strategy for 3D perovskites is developed, where perovskite monocrystalline films are epitaxially grown on the mother substrate, followed by its peeling off and transferring to arbitrary semiconductors, forming monocrystalline heterojunctions. The as-achieved CsPbBr3-Nb-doped SrTiO3 (Nb:STO) vdW p-n heterojunction exhibited comparable performance to their directly epitaxial counterpart, demonstrating the feasibility of vdW integration for 3D perovskites. Furthermore, the vdW integration could be extended to silicon substrates, rendering the CsPbBr3-n-Si and CsPbCl3-p-Si p-n heterojunction with apparent rectification behaviors and photoresponse. The vdW integration significantly enriches the selections of semiconductors hybridizing with perovskites and provides opportunities for monocrystalline perovskite optoelectronics with complex configurations and multiple functionalities.

10.
ACS Nano ; 18(26): 16958-16966, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38907712

ABSTRACT

Smart textiles capable of both energy harvesting and multifunctional sensing are highly desirable for next-generation portable electronics. However, there are still challenges that need to be conquered, such as the innovation of an energy-harvesting model and the optimization of interface bonding between fibers and active materials. Herein, inspired by the spiral structure of natural vines, a highly stretchable triboelectric helical yarn (TEHY) was manufactured by twisting the carbon nanotube/polyurethane nanofiber (CNT/PU NF) Janus membrane. The TEHY had a zebra-stripe-like design that was composed of black interval conductive CNTs and white insulative PU NFs. Due to the different electron affinity, the zebra-patterned TEHY realized a self-frictional triboelectric effect because the numerous microscopic CNT/PU triboelectric interfaces generated an alternating current in the external conductive circuit without extra external friction layers. The helical geometry combined with the elastic PU matrix endowed TEHY with superelastic stretchability and outstanding output stability after 1000 cycles of the stretch-release test. By virtue of the robust mechanical and electrical stability, the TEHY can not only be used as a high-entropy mechanical energy harvester but also serve as a self-powered sensor to monitor the stretching or deforming stimuli and human physiological activities in real time. These merits manifested the versatile applications of TEHY in smart fabrics, wearable power supplies, and human-machine interactions.

11.
Planta ; 260(1): 33, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896325

ABSTRACT

MAIN CONCLUSION: γ-Aminobutyric acid alleviates acid-aluminum toxicity to roots associated with enhanced antioxidant metabolism as well as accumulation and transportation of citric and malic acids. Aluminum (Al) toxicity has become the main limiting factor for crop growth and development in acidic soils and is further being aggravated worldwide due to continuous industrial pollution. The current study was designed to examine effects of GABA priming on alleviating acid-Al toxicity in terms of root growth, antioxidant defense, citrate and malate metabolisms, and extensive metabolites remodeling in roots under acidic conditions. Thirty-seven-day-old creeping bentgrass (Agrostis stolonifera) plants were used as test materials. Roots priming with or without 0.5 mM GABA for 3 days were cultivated in standard nutrient solution for 15 days as control or subjected to nutrient solution containing 5 mM AlCl3·6H2O for 15 days as acid-Al stress treatment. Roots were sampled for determinations of root characteristics, physiological and biochemical parameters, and metabolomics. GABA priming significantly alleviated acid-Al-induced root growth inhibition and oxidative damage, despite it promoted the accumulation of Al in roots. Analysis of metabolomics showed that GABA priming significantly increased accumulations of organic acids, amino acids, carbohydrates, and other metabolites in roots under acid-Al stress. In addition, GABA priming also significantly up-regulated key genes related to accumulation and transportation of malic and citric acids in roots under acid-Al stress. GABA-regulated metabolites participated in tricarboxylic acid cycle, GABA shunt, antioxidant defense system, and lipid metabolism, which played positive roles in reactive oxygen species scavenging, energy conversion, osmotic adjustment, and Al ion chelation in roots.


Subject(s)
Agrostis , Aluminum , Antioxidants , Malates , Plant Roots , gamma-Aminobutyric Acid , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Antioxidants/metabolism , gamma-Aminobutyric Acid/metabolism , Aluminum/toxicity , Agrostis/drug effects , Agrostis/metabolism , Agrostis/physiology , Malates/metabolism , Citric Acid/metabolism , Oxidative Stress/drug effects
12.
Int J Biol Macromol ; 269(Pt 1): 131994, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697431

ABSTRACT

Nowadays, dye water pollution is becoming increasingly severe. Composite of MXene, ZnS, and chitosan-cellulose material (MX/ZnS/CC) was developed to remove anionic dyes through the synergistic effect of adsorption and photocatalytic degradation. MXene was introduced as the cocatalyst to form Schottky heterostructure with ZnS for improving the separation efficiency of photocarriers and photocatalytic performance. Chitosan-cellulose material mainly served as the dye adsorbent, while also could improve material stability and assist in generation of free radicals for dye degradation. The physics and chemistry properties of MX/ZnS/CC composite were systematically inspected through various characterizations. MX/ZnS/CC composite exhibited good adsorption ability to anionic dyes with adsorption capacity up to 1.29 g/g, and excellent synergistic effects of adsorption and photodegradation with synergistic removal capacity up to 5.63 g/g. MX/ZnS/CC composite performed higher synergistic removal ability and better optical and electrical properties than pure MXene, ZnS, chitosan-cellulose material, and MXene/ZnS. After compounding, the synergistic removal percentage of dyes increased by a maximum of 309 %. MX/ZnS/CC composite mainly adsorbs anionic dyes through electrostatic interactions and catalyzes the generation of •O2-, h+, and •OH to degrade dyes, which has been successfully used to remove anionic dyes from environmental water, achieving a 100 % removal of 50 mg/L dye.


Subject(s)
Cellulose , Chitosan , Coloring Agents , Water Pollutants, Chemical , Zinc Compounds , Chitosan/chemistry , Adsorption , Cellulose/chemistry , Zinc Compounds/chemistry , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Catalysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Sulfides/chemistry , Water Purification/methods , Photolysis , Anions/chemistry
13.
Phytochemistry ; 223: 114120, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705265

ABSTRACT

Eleven previously undescribed sesquiterpenoids (8-18), one undescribed jasmonic acid derivative (35) and 28 known compounds were isolated from the leaves of Artemisia stolonifera. Undescribed compounds with their absolute configurations were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction and ECD calculation. Compound 8 was identified as a rare sesquiterpenoid featuring a rearranged 5/8 bicyclic ring system, whereas compound 17 was found to be an unprecedented monocyclic sesquiterpenoid with methyl rearrangement. Evaluation of biological activity showed that compounds 1-5 and 7 displayed cytotoxicity against six tumor cells. In the meantime, compounds 11, 12, 18 and 35 exhibited inhibitory effects against LPS-stimulated NO production in RAW 264.7 macrophage cells and reduced the transcription of IL-6 and IL-1ß in a dose-dependent manner at 25, 50 and 100 µM. Moreover, the anti-inflammatory-based network pharmacology and molecular docking analyses revealed potential target proteins of 11, 12, 18 and 35.


Subject(s)
Anti-Inflammatory Agents , Artemisia , Cyclopentanes , Nitric Oxide , Oxylipins , Sesquiterpenes , Artemisia/chemistry , Mice , Oxylipins/pharmacology , Oxylipins/chemistry , Oxylipins/isolation & purification , Animals , RAW 264.7 Cells , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Cyclopentanes/chemistry , Cyclopentanes/pharmacology , Cyclopentanes/isolation & purification , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Molecular Structure , Structure-Activity Relationship , Molecular Docking Simulation , Humans , Dose-Response Relationship, Drug , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Plant Leaves/chemistry , Drug Screening Assays, Antitumor
14.
Sci Rep ; 14(1): 10909, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740903

ABSTRACT

To improve the recognition effect of the folk dance image recognition model and put forward new suggestions for teachers' teaching strategies, this study introduces a Deep Neural Network (DNN) to optimize the folk dance training image recognition model. Moreover, a corresponding teaching strategy optimization scheme is proposed according to the experimental results. Firstly, the image preprocessing and feature extraction of DNN are optimized. Secondly, classification and target detection models are established to analyze the folk dance training images, and the C-dance dataset is used for experiments. Finally, the results are compared with those of the Naive Bayes classifier, K-nearest neighbor, decision tree classifier, support vector machine, and logistic regression models. The results of this study provide new suggestions for teaching strategies. The research results indicate that the optimized classification model shows a significant improvement in classification accuracy across various aspects such as action complexity, dance types, movement speed, dance styles, body dynamics, and rhythm. The accuracy, precision, recall, and F1 scores have increased by approximately 14.7, 11.8, 13.2, and 17.4%, respectively. In the study of factors such as different training images, changes in perspective, lighting conditions, and noise interference, the optimized model demonstrates a substantial enhancement in recognition accuracy and robustness. These findings suggest that, compared to traditional models, the optimized model performs better in identifying various dances and movements, enhancing the accuracy and stability of classification. Based on the experimental results, strategies for optimizing the real-time feedback and assessment mechanism in folk dance teaching, as well as the design of personalized learning paths, are proposed. Therefore, this study holds the potential to be applied in the field of folk dance, promoting the development and innovation of folk dance education.


Subject(s)
Dancing , Image Processing, Computer-Assisted , Neural Networks, Computer , Humans , Image Processing, Computer-Assisted/methods , Deep Learning , Teaching
15.
Front Immunol ; 15: 1310376, 2024.
Article in English | MEDLINE | ID: mdl-38720887

ABSTRACT

Introduction: Hypopharyngeal squamous cell carcinoma (HSCC) is one of the malignant tumors with the worst prognosis in head and neck cancers. The transformation from normal tissue through low-grade and high-grade intraepithelial neoplasia to cancerous tissue in HSCC is typically viewed as a progressive pathological sequence typical of tumorigenesis. Nonetheless, the alterations in diverse cell clusters within the tissue microenvironment (TME) throughout tumorigenesis and their impact on the development of HSCC are yet to be fully understood. Methods: We employed single-cell RNA sequencing and TCR/BCR sequencing to sequence 60,854 cells from nine tissue samples representing different stages during the progression of HSCC. This allowed us to construct dynamic transcriptomic maps of cells in diverse TME across various disease stages, and experimentally validated the key molecules within it. Results: We delineated the heterogeneity among tumor cells, immune cells (including T cells, B cells, and myeloid cells), and stromal cells (such as fibroblasts and endothelial cells) during the tumorigenesis of HSCC. We uncovered the alterations in function and state of distinct cell clusters at different stages of tumor development and identified specific clusters closely associated with the tumorigenesis of HSCC. Consequently, we discovered molecules like MAGEA3 and MMP3, pivotal for the diagnosis and treatment of HSCC. Discussion: Our research sheds light on the dynamic alterations within the TME during the tumorigenesis of HSCC, which will help to understand its mechanism of canceration, identify early diagnostic markers, and discover new therapeutic targets.


Subject(s)
Carcinogenesis , Hypopharyngeal Neoplasms , Single-Cell Analysis , Squamous Cell Carcinoma of Head and Neck , Humans , Male , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Hypopharyngeal Neoplasms/genetics , Hypopharyngeal Neoplasms/pathology , Hypopharyngeal Neoplasms/immunology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Sequence Analysis, RNA , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , Transcriptome , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics
16.
J Virol ; 98(6): e0057624, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38767375

ABSTRACT

Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE: Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Viral Envelope Proteins , Viral Proteins , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/physiology , Humans , Animals , Mice , Viral Proteins/metabolism , Viral Proteins/genetics , Sarcoma, Kaposi/virology , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Cell Line , Castleman Disease/virology , Castleman Disease/metabolism , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , HEK293 Cells , Endothelial Cells/virology
18.
J Phys Chem Lett ; 15(15): 4088-4095, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38587462

ABSTRACT

Although it is generally acknowledged that transition metals at high oxidation states represent superior oxygen evolution reaction (OER) activity, the preparation and stability of such a high-valence state are still a challenge, which requires relatively harsh reaction conditions and is unstable under ambient conditions. Herein, we report the formation of trivalent nickel (Ni3+) in laser-fabricated nickel oxides induced by polyaniline (PANI) under electrochemical activation via a significant charge transfer between Ni and N, as confirmed by X-ray photoelectron spectroscopy and density functional theory calculations. Thereafter, the presence of Ni3+ and the improved conductivity by PANI effectively increase the electrochemical OER activity of the samples together with excellent long-term stability. This work provides new insights for the rational manufacture of high-valence metal for electrochemical reactions.

19.
Biomater Res ; 28: 0013, 2024.
Article in English | MEDLINE | ID: mdl-38617751

ABSTRACT

Background: Fibrosis and inflammation due to ureteropelvic junction obstruction substantially contributes to poor renal function. Urine-derived stem-cell-derived exosomes (USC-Exos) have therapeutic effects through paracrine. Methods: In vitro, the effects of USC-Exos on the biological functions of HK-2 and human umbilical vein endothelial cells were tested. Cell inflammation and fibrosis were induced by transforming growth factor-ß1 and interleukin-1ß, and their anti-inflammatory and antifibrotic effects were observed after exogenous addition of USC-Exos. Through high-throughput sequencing of microRNA in USC-Exos, the pathways and key microRNAs were selected. Then, the antifibrotic and anti-inflammatory effects of exosomal miR-122-5p and target genes were verified. The role of the miR-122-5p/SOX2 axis in anti-inflammatory and antifibrotic effects was verified. In vivo, a rabbit model of partial unilateral ureteral obstruction (PUUO) was established. Magnetic resonance imaging recorded the volume of the renal pelvis after modeling, and renal tissue was pathologically analyzed. Results: We examined the role of USC-Exos and their miR-122-5p content in obstructive kidney injury. These Exos exhibit antifibrotic and anti-inflammatory activities. SOX2 is the hub gene in PUUO and negatively related to renal function. We confirmed the binding relationship between miR-122-5p and SOX2. The anti-inflammatory and antifibrotic effects of miR-122-5p were inhibited, indicating that miR-122-5p has anti-inflammatory and antifibrotic effects by inhibiting SOX2 expression. In vivo, the PUUO group showed typical obstructive kidney injury after modeling. After USC-Exo treatment, the shape of the renal pelvis shown a remarkable improvement, and inflammation and fibrosis decreased. Conclusions: We confirmed that miR-122-5p from USC-Exos targeting SOX2 is a new molecular target for postoperative recovery treatment of obstructive kidney injury.

20.
Front Microbiol ; 15: 1339621, 2024.
Article in English | MEDLINE | ID: mdl-38650882

ABSTRACT

Background: Cutaneous melanoma (CM) of the skin stands as the leading cause of mortality among skin cancer-related deaths. Despite the successes achieved with novel therapies such as immunotherapy and targeted therapy, their efficacy remains limited, necessitating further exploration of new treatment modalities. The gut microbiota and CM may be linked, as indicated by a growing body of preclinical and observational research. Nevertheless, the exact correlation between the intestinal microbiota and CM remains to be determined. Therefore, this study aims to assess the potential causal relationship between the gut microbiota and CM. Methods: The study utilized exposure data obtained from the MiBioGen consortium's microbiome GWAS, which included a total of 18,340 samples gathered from 24 population-based cohorts. Data at the summary level for CM were acquired from the UK Biobank investigation. The main analytical strategy utilized in this research was the inverse variance weighted (IVW) technique, supported by quality assurance measures like the weighted median model, MR-Egger, simple model, and weighted model approaches. The Cochran's Q test was used to evaluate heterogeneity. To ascertain potential pleiotropy, we employed both the MR-Egger regression and the MR-PRESSO test. Sensitivity analysis was conducted using the leave-one-out method. Results: The study found that the class Bacteroidia (OR = 0.997, 95% CI: 0.995-0.999, p = 0.027), genus Parabacteroides (OR = 0.997, 95% CI: 0.994-0.999, p = 0.037), order Bacteroidales (OR = 0.997, 95% CI: 0.995-0.999, p = 0.027), and genus Veillonella (OR = 0.998, 95% CI: 0.996-0.999, p = 0.046) have protective effects on CM. On the order hand, the genus Blautia (OR = 1.003, 95% CI: 1-1.006, p = 0.001) and phylum Cyanobacteria (OR = 1.002, 95% CI: 1-1.004, p = 0.04) are identified as risk factors for CM. Conclusion: We comprehensively assessed the potential causal relationship between the gut microbiota and CM and identified associations between six gut microbiota and CM. Among these, four gut microbiota were identified as protective factors for CM, while two gut microbiota were identified as risk factors for CM. This study effectively established a causal relationship between the gut microbiota and CM, thereby providing valuable insights into the mechanistic pathways through which the microbiota impacts the progression of CM.

SELECTION OF CITATIONS
SEARCH DETAIL
...