Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Technol Cancer Res Treat ; 15(6): 729-731, 2016 12.
Article in English | MEDLINE | ID: mdl-26376693

ABSTRACT

Deletion of oncosuppressors occurs frequently in the cancer genome. A great deal of effort has been made to therapeutically restore the lost function of oncosuppressors, with little clinically translatable success, however. Reassuringly, besides the disappointing restoration endeavors, oncosuppressor loss can be therapeutically exploited in several other ways, such as the "synthetic lethality" strategies and the "therapeutic vulnerability" created by codeletion of neighboring genes. The study by Liu et al showed that codeletion of p53 and a neighboring essential gene POLR2A rendered colon cancer cells highly sensitive to further inhibition of POLR2A both in vitro and in vivo In recent years, several studies have reported similar phenomenon in a wide range of cancer types. In this focus article, we will introduce several kinds of anticancer opportunities created by the loss of oncosuppressors and discuss their mechanisms. Given the frequency of oncosuppressor loss in cancer, its therapeutic exploitation rather merits further investigation and may open a new window for oncotherapy.


Subject(s)
Genes, Tumor Suppressor/physiology , Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Gene Deletion , Genome/genetics , Humans
2.
J Med Genet ; 52(5): 289-96, 2015 May.
Article in English | MEDLINE | ID: mdl-25713109

ABSTRACT

First introduced into mammalian organisms in 2013, the RNA-guided genome editing tool CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) offers several advantages over conventional ones, such as simple-to-design, easy-to-use and multiplexing (capable of editing multiple genes simultaneously). Consequently, it has become a cost-effective and convenient tool for various genome editing purposes including gene therapy studies. In cell lines or animal models, CRISPR-Cas9 can be applied for therapeutic purposes in several ways. It can correct the causal mutations in monogenic disorders and thus rescue the disease phenotypes, which currently represents the most translatable field in CRISPR-Cas9-mediated gene therapy. CRISPR-Cas9 can also engineer pathogen genome such as HIV for therapeutic purposes, or induce protective or therapeutic mutations in host tissues. Moreover, CRISPR-Cas9 has shown potentials in cancer gene therapy such as deactivating oncogenic virus and inducing oncosuppressor expressions. Herein, we review the research on CRISPR-mediated gene therapy, discuss its advantages, limitations and possible solutions, and propose directions for future research, with an emphasis on the opportunities and challenges of CRISPR-Cas9 in cancer gene therapy.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genetic Therapy , Animals , Cell Line , Gene Transfer Techniques , Genome , Humans , Models, Animal , RNA Editing
3.
J Med Genet ; 52(1): 17-24, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25391452

ABSTRACT

Pseudogenes were initially regarded as non-functional genomic fossils resulted from inactivating gene mutations during evolution. However, later studies revealed that they play a plethora of roles at multiple levels (DNA, RNA and/or protein) in diverse physiological and pathological processes, especially in cancer, both parental-gene-dependently and parental-gene-independently. Pseudogenes can interact with parental genes or other gene loci, leading to alteration in their sequences and/or transcriptional activities. Pseudogene-derived RNAs play multifaceted roles in post-transcriptional regulation as antisense RNAs, endogenous small-interference RNAs, competing endogenous RNAs and so on. Pseudogenic proteins can mirror, mimic or interfere with the functions of their parental counterparts. Herein, we discuss the general aspects (origination, classification, identification) of pseudogenes, focus on their multiple functions in cancer pathogenesis and prospect the potentials they hold as molecular signatures assisting in cancer reclassification and tailored therapy.


Subject(s)
DNA, Intergenic/genetics , Models, Genetic , Neoplasms/genetics , Pseudogenes/genetics , Pseudogenes/physiology , RNA, Antisense/genetics , Humans , Mutation/genetics
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-259638

ABSTRACT

<p><b>OBJECTIVE</b>Leukemia cells can acquire a multidrug resistant (MDR) phenotype in response to a wide variety of chemotherapeutic agents including doxorubicin (Dox). In addition to the constitutive expression in the leukemia prior to chemotherapy, a complex phenotype of pleiotropic resistance is presented in the residual or recurrent leukemia. Recent studies showed Dox-induced coexpression of COX2 and MDR1 genes in human leukaemia cells, and whether Dox-induced MDR1 up-regulation in acute leukaemia cells is dependent on COX2-transcriptional activity and thus might be overcome or prevented with COX2-promotor inhibitor quercetin interfering with COX2 expression and activity. This study was purposed to investigate the impacts of quercetin on Dox-induced mRNA expression of MDR1 and COX2 genes in HL-60 leukemia cells.</p><p><b>METHODS</b>The MDR1 and COX2 mRNA expression in HL-60 cells was detected by RT-PCR; the prostaglandin E2 (PGE2) release was measured by ELISA; the cytotoxicity of Dox was determined by MTT test.</p><p><b>RESULTS</b>The incubation of HL-60 cells with Dox not only up-regulated MDR1 mRNA, but also COX2 mRNA expression, and after co-incubation with quercetin or celecoxib, Dox-induced overexpression of MDR1 and COX2 mRNA were reduced by quercetin, not by celecoxib, whereas PGE2 release was significantly decreased with subsequent enhancement of Dox cytotoxic efficacy by both of them.</p><p><b>CONCLUSIONS</b>Dox-induced MDR1 up-regulation may be dependent on COX2-transcriptional activity, not PGE2, suggesting that the existence of causal link between COX2 and MDR1 expression induced by Dox, and modulation of COX2 transcriptional expression by quercetin would not only sensitize leukemia cells to Dox, but also prevent the acquisition of MDR during chemotherapy.</p>


Subject(s)
Humans , ATP Binding Cassette Transporter, Subfamily B , Antineoplastic Agents , Doxorubicin , Gene Expression Regulation, Neoplastic , HL-60 Cells , Quercetin , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...