Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800410

ABSTRACT

Coal-derived carbon nanofibers (CCNFs) have been recently found to be a promising and low-cost electrode material for high-performance supercapacitors. However, the knowledge gap still exists between holistic understanding of coal precursors derived from different solvents and resulting CCNFs' properties, prohibiting further optimization of their electrochemical performance. In this paper, assisted by laser desorption/ionization (LDI) and gas chromatography-mass spectrometry (GC-MS) technologies, a systematic study was performed to holistically characterize mass distribution and chemical composition of coal precursors derived from various ionic liquids (ILs) as extractants. Sequentially, X-ray photoelectron spectroscopy (XPS) revealed that the differences in chemical properties of various coal products significantly affected the surface oxygen concentrations and certain species distributions on the CCNFs, which, in turn, determined the electrochemical performances of CCNFs as electrode materials. We report that the CCNF that was produced by an oxygen-rich coal fragment from C6mimCl ionic liquid extraction showed the highest concentrations of quinone and ester groups on the surface. Consequentially, C6mimCl-CCNF achieved the highest specific capacitance and lowest ion diffusion resistance. Finally, a symmetric carbon/carbon supercapacitor fabricated with such CCNF as electrode delivered an energy density of 21.1 Wh/kg at the power density of 0.6 kW/kg, which is comparable to commercial active carbon supercapacitors.

2.
Materials (Basel) ; 14(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375732

ABSTRACT

Two-dimensional covalent organic frameworks (2D-COFs) have been of increasing interest in the past decade due to their porous structures that ideally can be highly ordered. One of the most common routes to these polymers relies on Schiff-base chemistry, i.e., the condensation reaction between a carbonyl and an amine. In this report, we elaborate on the condensation of 3,6-dibromobenzene-1,2,4,5-tetraamine with hexaketocyclohexane (HKH) and the subsequent carbonylation of the resulting COF, along with the possibility that the condensation reaction on HKH can result in a trans configuration resulting in the formation of a disordered 2D-COF. This strategy enables modification of COFs via bromine substitution reactions to place functional groups within the pores of the materials. Ion-sieving measurements using membranes from this COF, reaction of small molecules with unreacted keto groups along with modeling studies indicate disorder in the COF polymerization process. We also present a Monte Carlo simulation that demonstrates the influence of even small amounts of disorder upon both the 2D and 3D structure of the resulting COF.

3.
Colloids Surf B Biointerfaces ; 180: 371-375, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31079030

ABSTRACT

Functional poly(ethylene glycol) diacrylate (PEGDA) hydrogel microparticles for the detection of bioactive macromolecules were fabricated via oxygen-inhibited photopolymerization in a droplet microfluidic device. Hydrogel network functionalization and architecture were characterized using a biotin-avidin binding assay, which revealed radial network inhomogeneities dependent on exposure conditions. Empirical results were corroborated using a reaction-diffusion model, describing the effects of exposure intensity on the spatial photopolymerization kinetics and resulting polymeric mesh network. The combination of finely controlled exposure conditions and predictive simulations enables the generation of tailored particles with microengineered interfaces and gradients in crosslinking density, which dictate solute diffusivity and elasticity, augmenting the utility of this approach in engineering multifunctional, size-excluding hydrogel particles for multiplexed biomolecular sensing.


Subject(s)
Hydrogels/chemistry , Light , Microspheres , Oxygen/chemistry , Polymerization , Tissue Engineering/methods , Avidin/chemistry , Biotin/chemistry , Diffusion , Fluorescence , Rhodamines/chemistry
4.
J Am Chem Soc ; 140(51): 18200-18207, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30512941

ABSTRACT

The preparation of membranes with high selectivity based on specific chemical properties such as size and charge would impact the efficiency of the world's energy supply, the production of clean water, and many other separation technologies. We report a flexible synthetic protocol for preparing highly ordered two-dimensional nanoporous polymeric materials (termed covalent organic frameworks or COFs) that allow for placing virtually any function group within the nanopores. We demonstrate that membranes, fabricated with this new family of materials with carboxylated pore walls, are very water permeable, as well as highly charged and size selective.

5.
ACS Omega ; 3(9): 10493-10502, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-31459174

ABSTRACT

Interfaces combining polydopamine (PDA) and nanoparticles have been widely utilized for fabricating hybrid colloidal particles, thin films, and membranes for applications spanning biosensing, drug delivery, heavy metal detection, antifouling membranes, and lithium ion batteries. However, fundamental understanding of the interaction between PDA and nanoparticles is still limited, especially the impact of PDA on nanoparticle nucleation and growth. In this work, PDA is used to generate functional bonding sites for depositing titanium dioxide (TiO2) via atomic layer deposition (ALD) onto a nanoporous polymer substrate for a range of ALD cycles (<100). The resulting hybrid membranes are systematically characterized using water contact angle, scanning electron microscopy, atomic force microscopy, nitrogen adsorption and desorption, and X-ray photoelectron spectroscopy (XPS). An intriguing nonlinear relationship was observed between the number of ALD cycles and changes in surface properties (water contact angle and surface roughness). Together with XPS study, those changes in surface properties were exploited to probe the nanoparticle nucleation and growth process on complex PDA-coated porous polymer substrates. Molecular level understanding of inorganic and polymer material interfaces will shed light on fine-tuning nanoparticle-modified polymeric membrane materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...