Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stress ; 22(1): 44-52, 2019 01.
Article in English | MEDLINE | ID: mdl-30481088

ABSTRACT

The corticotropin-releasing hormone (CRH) is a neuropeptide mediating stress responses. CRH exerts effects via the hypothalamus pituitary adrenal axis as well as immediate effects on the sympathetic-adrenal-medullary system. Genetic variants of the CRH promoter were previously found to be associated with altered CRH promoter activity and physiological reactions. Functional characterization of three CRH promoter haplotypes have been performed in vitro using a reporter gene assay under different stimulation conditions. Furthermore, 232 healthy subjects were genotyped and the influence of CRH haplotypes on basal parameters such as post-awakening cortisol and blood pressure as well as on stress reactivity measured after socially evaluated cold pressor test (SeCPT) was investigated. In vitro, CRH haplotype 2 showed the highest promoter activity under baseline conditions and after forskolin stimulation compared with other haplotypes. Forskolin treatment resulted in a two fold increase of haplotype 2 promoter activity compared with the baseline condition. Cell line-dependent promoter activation was found after hydrocortisone treatment. In vivo, CRH haplotype 2 carriers showed significant higher baseline blood pressure (p = .002) and blood pressure after SeCPT (p < .001), but did not differ in cortisol levels. This study provides converging evidence for the importance of CRH promoter variants on physiological stress response parameters.


Subject(s)
Corticotropin-Releasing Hormone/genetics , Stress, Physiological/genetics , Adult , Animals , Blood Pressure/genetics , Cell Line, Tumor , Female , Genotype , Haplotypes , Humans , Hydrocortisone/blood , Hypothalamo-Hypophyseal System/physiology , Male , Mice , Pituitary-Adrenal System , Promoter Regions, Genetic
2.
Biol Psychol ; 119: 112-21, 2016 09.
Article in English | MEDLINE | ID: mdl-27427534

ABSTRACT

The hypothalamus-pituitary-adrenal (HPA) axis is a crucial endocrine system for coping with stress. A reliable and stable marker for the basal state of that system is the cortisol awakening response (CAR). We examined the influence of variants of four relevant candidate genes; the mineralocorticoid receptor gene (MR), the glucocorticoid receptor gene (GR), the serotonin transporter gene (5-HTT) and the gene encoding the brain-derived neurotrophic factor (BDNF) on CAR and self-perceived stress in 217 healthy subjects. We found that polymorphisms of GR influenced both, the basal state of the HPA axis as well as self-perceived stress. MR only associated with self-perceived stress and 5-HTT only with CAR. BDNF did not affected any of the investigated indices. In summary, we suggest that GR variants together with the CAR and supplemented with self reports on perceived stress might be useful indicators for the basal HPA axis activity.


Subject(s)
Adaptation, Psychological/physiology , Receptors, Glucocorticoid/genetics , Receptors, Mineralocorticoid/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Stress, Psychological/genetics , Adult , Basal Metabolism/genetics , Brain-Derived Neurotrophic Factor/genetics , Female , Healthy Volunteers , Humans , Hydrocortisone/physiology , Hypothalamo-Hypophyseal System/physiology , Male , Pituitary-Adrenal System/physiology , Polymorphism, Genetic , Self Concept , Stress, Psychological/psychology , Young Adult
3.
Clin Epigenetics ; 8: 12, 2016.
Article in English | MEDLINE | ID: mdl-26823689

ABSTRACT

BACKGROUND: Gender, genetic makeup, and prior experience interact to determine physiological responses to an external perceived stressor. Here, we investigated the contribution of both genetic variants and promoter methylation of the NR3C1 (glucocorticoid receptor) gene to the cardiovascular and hypothalamus-pituitary-adrenal (HPA) axis response to the socially evaluated cold pressor test (seCPT). RESULTS: Two hundred thirty-two healthy participants were recruited and underwent the experiment. They were randomly assigned to either the seCPT group (cold water) or a control group (warm water). The seCPT group had a clear stress reaction; salivary cortisol levels and peak systolic and diastolic blood pressure all increased significantly compared to the control group. GR genotype (TthIIII, NR3C1-I, 1H, E22E, R23K, BclI and 9beta) and methylation data were obtained from 218 participants. Haplotypes were built from the GR genotypes, and haplotype 2 (minor allele of BclI) carriers had a higher cortisol response to the seCPT in comparison to non-carriers (20.77 ± 13.22; 14.99 ± 8.42; p = 0.034), as well as independently of the experimental manipulation, higher baseline heart rate (72.44 ± 10.99; 68.74 ± 9.79; p = 0.022) and blood pressure (115.81 ± 10.47; 111.61 ± 10.74; p = 0.048). Average methylation levels throughout promoter 1F and 1H were low (2.76 and 1.69 %, respectively), but there was a strong correlation between individual CpGs and the distance separating them (Pearson's correlation r = 0.725, p = 3.03 × 10(-26)). Higher promoter-wide methylation levels were associated with decreased baseline blood pressure, and when incorporated into a linear mixed effect model significantly predicted lower systolic and diastolic blood pressure evolution over time in response to the experimental manipulation. The underlying genotype significantly predicted methylation levels; particularly, the homozygous BclI minor allele was associated with higher methylation in promoter 1H (p = 0.042). CONCLUSIONS: This is one of the first studies linking epigenetic modifications of the GR promoter, receptor genotype and physiological measures of the stress response. At baseline, there were clear genetic and epigenetic effects on blood pressure. The seCPT induced a strong cardiovascular and HPA axis response, and both systems were affected by the functional genetic variants, although methylation also predicted blood pressure reactivity. The return to baseline was predominantly influenced by the genomic sequence. Overall, the physiological response to the seCPT is controlled by an exquisite mix of genetic and epigenetic factors.


Subject(s)
Blood Pressure/physiology , DNA Methylation , Hydrocortisone/analysis , Promoter Regions, Genetic/genetics , Receptors, Glucocorticoid/genetics , Saliva/chemistry , Stress, Psychological/genetics , Blood Pressure/genetics , Female , Genetic Variation/genetics , Genetic Variation/physiology , Genotype , Haplotypes/genetics , Humans , Hydrocortisone/physiology , Male , Receptors, Glucocorticoid/physiology , Stress, Psychological/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...